Toggle light / dark theme

Quantum theory says that stuff doesn’t exist when we’re not looking at it. But weirder-than-weird experiments are resurrecting a long-derided alternative.

By Anil Ananthaswamy

IN OCTOBER 1951, physicist David Bohm left the US for Brazil. Branded a communist sympathiser, he had been arrested for refusing to testify to the US Congress. Acquitted, he was still stripped of his Princeton professorship. His departure began an exile that would last until his death, as a naturalised British citizen, four decades later.

Read more

Adam Crowl considers spaceships if EM-Drive is verified as a real thing.

If the NASA emdrive performance of 1.2 millinewtons per kilowatt.

8.3 TeraWatts of power would be needed to provide 10 million newtons of thrust to accelerate a 1000 ton space-craft at 1 gee of acceleration. We have no power source that could generate 8.3 TeraWatts for a 1000 ton spacecraft.

Read more

An international team led by the University of Chicago’s Institute for Molecular Engineering has discovered how to manipulate a weird quantum interface between light and matter in silicon carbide along wavelengths used in telecommunications.

The work advances the possibility of applying quantum mechanical principles to existing optical fiber networks for secure communications and geographically distributed quantum computation. Prof. David Awschalom and his 13 co-authors announced their discovery in the June 23 issue of Physical Review X.

“Silicon carbide is currently used to build a wide variety of classical electronic devices today,” said Awschalom, the Liew Family Professor in Molecular Engineering at UChicago and a senior scientist at Argonne National Laboratory. “All of the processing protocols are in place to fabricate small quantum devices out of this material. These results offer a pathway for bringing quantum physics into the technological world.”

Read more

Researchers from Italy and Canada have made liquid light at room temperatures for the first time. The work paves the way for studying quantum hydrodynamics further and for future applications of this new type of matter in electronics devices.

Thanks to technological advances, scientists now have various ways of manipulating matter. Often times, these result in discovering new types of matter that posses unique properties — like the famous metallic hydrogen and the bizarre time crystal. The discovery of such materials leads to a wide range of potential applications in electronics. One of these is the so-called “liquid light,” a strange matter which researchers from the CNR NANOTECH Institute of Nanotechnology in Italy and the Polytechnique Montréal in Canada recently formed at room temperature for the first time.

Read more

Wireless charging is a great idea in theory: You can just place your device on a charging mat without having to mess with any wires. But it still doesn’t solve the main hassle of charging in the first place, which is the requirement to leave your device in one place. But now, scientists may have found the answer to that problem using principles from quantum mechanics.

Currently, wireless, or inductive, charging uses an electromagnetic field to transmit energy over very short distances. That’s why your phone, or whatever device you’re charging wirelessly, must remain near a wireless pad in order to actually charge. But Shanhui Fan and his team at Stanford University have published an article in Nature that details a wireless charging system that works even when the charger and device are a meter apart. You can also move around the device while it’s being charged without interrupting the power transfer.

It works by using a principle of quantum mechanics called parity-time symmetry to create a charger with a self-adjusting power flow. A connected amplifier automatically controls the flow of power between the transmitter and receiver. As a device moves further away from the charger, the power levels adjust automatically to ensure an even and uninterrupted flow of current.

Read more

Chinese researchers report that they’ve set a new distance record for quantum teleportation through space, the phenomenon that Albert Einstein once scoffed at as “spooky action at a distance.”

The technology isn’t yet ready for prime time, but eventually it could open the way for a new type of unbreakable encryption scheme based on the weirdness of quantum physics.

Read more

“For example, Hasan says, “we can test theoretical ideas in the early universe,” simulating how particles may have behaved just after the Big Bang, when Lorentz symmetry may not have been obeyed.”

It’s interesting how often I hear condensed matter physicists justify their work by saying “might be important for something with quantum gravity” while condensed matter physics by itself is much more likely than quantum gravity to be good for something.

Read more