Toggle light / dark theme

If you’ve read anything about quantum computers, you may have encountered the statement, “It’s like computing with zero and one at the same time.” That’s sort of true, but what makes quantum computers exciting is something spookier: entanglement.

A new quantum device entangles 20 quantum bits together at the same time, making it perhaps one of the most entangled, controllable devices yet. This is an important milestone in the quantum computing world, but it also shows just how much more work there is left to do before we can realize the general-purpose quantum computers of the future, which will be able to solve big problems relating to AI and cybersecurity that classical computers can’t.

“We’re now getting access to single-particle-control devices” with tens of qubits, study author Ben Lanyon from the Institute for Quantum Optics and Quantum Information in Austria told Gizmodo. Soon, “we can get to the level where we can create super-exotic quantum states and see how they behave in the lab. I think that’s very exciting.”

Read more

Quantum computing is promising to be one of the biggest technological revolutions of the modern era.

By harnessing the power of quantum mechanics, machines will be able to achieve data processing of speed and complexity unattainable with current computers. Traditional computers are based on a binary model on a system of switches that can be either on or off, represented with a 1 or a 0.

Quantum computers are different in that their switches can be in both the on and off positions at the same time, called ‘superpositions.’ This ability to be in two simultaneous states is what makes quantum computers faster. Much faster.

Read more

In the summer of 1935, the physicists Albert Einstein and Erwin Schrödinger engaged in a rich, multifaceted and sometimes fretful correspondence about the implications of the new theory of quantum mechanics.

The focus of their worry was what Schrödinger later dubbed entanglement: the inability to describe two quantum systems or particles independently, after they have interacted.

Until his death, Einstein remained convinced that entanglement showed how quantum mechanics was incomplete. Schrödinger thought that entanglement was the defining feature of the new physics, but this didn’t mean that he accepted it lightly.

Read more

Locking up super-secret information with digital encryption has become even more secure with the production of numbers that aren’t just ‘nearly random’, but are truly unpredictable in every sense of the word.

Using the data generated by a three-year-old experiment on quantum entanglement, the US National Institute of Standards and Technology (NIST) recently generated codes that are guaranteed to be one of a kind, and it could set a new landmark in communications.

On one level, randomness is an easy thing to grasp. We flip coins, roll dice, and pick cards with a basic sense that the outcome can’t be easily predicted.

Read more

In the summer of 1935, the physicists Albert Einstein and Erwin Schrödinger engaged in a rich, multifaceted and sometimes fretful correspondence about the implications of the new theory of quantum mechanics. The focus of their worry was what Schrödinger later dubbed entanglement: the inability to describe two quantum systems or particles independently, after they have interacted.

Until his death, Einstein remained convinced that entanglement showed how quantum mechanics was incomplete. Schrödinger thought that entanglement was the defining feature of the new physics, but this didn’t mean that he accepted it lightly. “I know of course how the hocus pocus works mathematically,” he wrote to Einstein on July 13, 1935. “But I do not like such a theory.” Schrödinger’s famous cat, suspended between life and death, first appeared in these letters, a byproduct of the struggle to articulate what bothered the pair.

The problem is that entanglement violates how the world ought to work. Information can’t travel faster than the speed of light, for one. But in a 1935 paper, Einstein and his co-authors showed how entanglement leads to what’s now called quantum nonlocality, the eerie link that appears to exist between entangled particles. If two quantum systems meet and then separate, even across a distance of thousands of lightyears, it becomes impossible to measure the features of one system (such as its position, momentum and polarity) without instantly steering the other into a corresponding state.

Read more

In principle, a wormhole-like scenario is possible, but a wormhole tends to close before objects or other matter could pass through it. As far as we know, it’s unlikely we could construct a wormhole that stays open long enough for us to get to a distant part of the universe.

That’s really the issue: Can you keep a wormhole open?

Wormholes can exist even at the quantum level, which is a very small scale, smaller than an atom. Trying to move matter through a wormhole at the classical level, the large-size level, is where it gets trickier.

Read more

Our known universe may end the same way it was created: With a big, sudden bang.

That’s according to new research from a group of Harvard physicists, who found that the destabilization of the Higgs Boson — a tiny quantum particle that gives other particles mass — could lead to a huge explosion of energy that would consume everything in the known universe.

The energy released by the event would destabilize the laws of physics and chemistry.

Read more