Menu

Blog

Archive for the ‘quantum physics’ category: Page 77

Feb 7, 2024

2054, Part III: The Singularity

Posted by in categories: biological, quantum physics, robotics/AI, singularity

“We’d witness advances like mind-uploading,” B.T. said, and described the process by which the knowledge, analytic skills, intelligence, and personality of a person could be uploaded to a computer chip. “Once uploaded, that chip could be fused with a quantum computer that couples biological with artificial intelligence. If you did this, you’d create a human mind that has a level of computational, predictive, analytic, and psychic skill incomprehensibly higher than any existing human mind. You’d have the mind of God. That online intelligence could then create real effects in the physical world. God’s mind is one thing, but what makes God God is that He cometh to earth —”

When B.T. said earth, he made a sweeping gesture, like a faux preacher, and in his excitement, he knocked over Lily’s glass of wine. A waiter promptly appeared with a handful of napkins, sopping up the mess. B.T. waited for the waiter to leave.

“Don’t give me that look.”

Feb 7, 2024

Research team takes a fundamental step toward a functioning quantum internet

Posted by in categories: computing, internet, mathematics, quantum physics

Hong-Ou-Mandel interference of single-#photon-level pulses stored in independent room-temperature #quantum #memories Quantum #repeater #networks require independent absorptive quantum memories capable of #storing and #retrieving indistinguishable photons to perform high-repetition entanglement…


Research with quantum computing and quantum networks is taking place around the world in the hopes of developing a quantum internet in the future. A quantum internet would be a network of quantum computers, sensors, and communication devices that will create, process, and transmit quantum states and entanglement and is anticipated to enhance society’s internet system and provide certain services and securities that the current internet does not have.

A team of Stony Brook University physicists and their collaborators have taken a significant step toward the building of a testbed by demonstrating a foundational quantum network measurement that employs room-temperature . Their findings are described in a paper published in npj Quantum Information.

Continue reading “Research team takes a fundamental step toward a functioning quantum internet” »

Feb 6, 2024

IBM and IonQ Researchers Design Classical Algorithm to Tackle Recent Harvard-Led Study’s Computational Task

Posted by in categories: computing, information science, quantum physics

Despite the Harvard 48 logical #qubits paper is perhaps the biggest leap in #quantum technologies, still the final circuit is classically simulable.


Politics makes strange bedfellows, apparently so does quantum benchmarking.

In a surprising development, IBM Quantum and IonQ researchers teamed up to reveal an alternative classical simulation algorithm for an impressive error correction study conducted by a Harvard and QuEra team and published recently in Nature. IBM is a leader in superconducting quantum computers, while IonQ is noted as a pioneer in trapped ion devices.

Continue reading “IBM and IonQ Researchers Design Classical Algorithm to Tackle Recent Harvard-Led Study’s Computational Task” »

Feb 6, 2024

Breaking boundaries in quantum photonics: New nanocavities unlock new frontiers in light confinement

Posted by in categories: materials, quantum physics

In a significant leap forward for quantum nanophotonics, a team of European and Israeli physicists has introduced a new type of polaritonic cavities and redefined the limits of light confinement. This pioneering work, detailed in a study published in Nature Materials, demonstrates an unconventional method to confine photons, overcoming the traditional limitations in nanophotonics.

Physicists have long been seeking ways to force photons into increasingly small volumes. The natural length scale of the is the wavelength and when a photon is forced into a cavity much smaller than the wavelength, it effectively becomes more “concentrated.” This concentration enhances interactions with electrons, amplifying quantum processes within the cavity.

However, despite significant success in confining light into deep subwavelength volumes, the effect of dissipation (optical absorption) remains a major obstacle. Photons in nanocavities are absorbed very quickly, much faster than the wavelength, and this dissipation limits the applicability of nanocavities to some of the most exciting quantum applications.

Feb 6, 2024

QuEra to build 10,000 qubits error-corrected quantum computer by 2026

Posted by in categories: computing, quantum physics

QuEra aims to unleash a new era of innovation and discovery.

Feb 6, 2024

What Physicists Have Been Missing

Posted by in category: quantum physics

An exciting new theory reconciles gravity and quantum physics. I think it’s wrong. But I may be too.

Feb 6, 2024

L5440a (1).pdf

Posted by in category: quantum physics

The new quantum logic.


Shared with Dropbox.

Feb 5, 2024

US firm plans to build 10,000 qubit quantum computer by 2026

Posted by in categories: quantum physics, supercomputing

QuEra is cofident that by 2026 it would have built a commercial quantum computer that can beat supercomputers of today with ease.

Feb 5, 2024

Quantum testbeds provide gateway to large-scale quantum computing

Posted by in categories: computing, quantum physics

Seven quantum hardware companies have been awarded multimillion-pound contracts to build a series of quantum testbeds at the National Quantum Computing Centre by March 2025.

Feb 4, 2024

Scientists Transform Everyday Materials Into Conductors for Quantum Computers

Posted by in categories: computing, quantum physics

Researchers at the University of California, Irvine and Los Alamos National Laboratory, publishing in the latest issue of Nature Communications, describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.

“The materials we made are substances that exhibit unique electrical or quantum properties because of their specific atomic shapes or structures,” said Luis A. Jauregui, professor of physics & astronomy at UCI and lead author of the new paper. “Imagine if we could transform glass, typically considered an insulating material, and convert it into efficient conductors akin to copper. That’s what we’ve done.”

Conventional computers use silicon as a conductor, but silicon has limits. Quantum computers stand to help bypass these limits, and methods like those described in the new study will help quantum computers become an everyday reality.

Page 77 of 768First7475767778798081Last