Experiments show how electrons in Mott insulators with strong spin-orbit coupling arrange themselves to make the materials magnetic at low temperatures. The work helps bring us closer to a more complete quantum theory of magnetism.
Category: quantum physics – Page 766
Many have asked me what does this DARPA announcement on their project (RadioBio) mean. Well, imagine a world in the next 10 to 15 years where you no longer need any devices (no smartphone, no AR contacts, no smartwatch, no wearables, no external BMIs or invasive implants, etc.) of any kind as Quantum Bio technology uses (in DARPA’s case) connected cell technology to connect people to people and information online (private and publically available. This approach is the least invasive method of turning cells into connected technology.
Military will mean no more lugging of devices and certain types of equipment around on the battlefield plus lower risk of stolen intelligence as no device or equipment left behind or stolen.
What does it mean to consumers? Means no more losing phones and other devices as well as broken down equipment be replaced every 2years and no more insurance and extra-warranty payments for devices; and no more devices stolen with your information on it. And, it means my doctors and body (AI and non-AI methods) can monitor my health and activate pain relief, etc. through biosystem treatments such as pain can be suppressed via the readings or before the pain is felt. It also empowers the immune system to proactively prevent diseases as the biosystem technology will monitor and treat as needed.
In Brief:
Physicists were able to simulate high-energy experimens thanks to this primitive quantum computer. Prediction of theoretical physics may soon be tested.
Our current computers are not capable of running simulations of high-energy physics experiments. However, quite recently, scientists were able to use a primitive quantum computer in the simulation of the spontaneous creation of particle-antiparticle pairs. This makes it easier for physicists to further investigate the fundamental particles. A research team published their findings in the journal, Nature.
Playlist: Do We Live in a Simulated Reality?
The Quantum World of Digital Physics: Can a virtual reality be real?
“Quantum physics requires us to abandon the distinction between information and reality.” Anton Zeilinger.
Part 1. Information and Simulated Reality.
Sharing more research conducted on Quantum Bio’s Brain to Brain communications. For all my hardware/ device friends exploring their own futures in a QC world. This was resurfaced in Jan 2017; the report itself is still relevant. Quantum Bio truly will change our device markets, IoT, and medicine/ healthcare drastically. This will be where we truly see tech and bio as one.
Want to see real convergence of tech and bio meaning no more need for smart devices, improved immunology in humans to counteract proactively disease and illness, accelerate heal times from injuries, reverse aging, etc. then you need to definitely engage Quantum bio in your work and discoveries as many have seen its potential and making changes leveraging this technology.
What you do on the Internet is nobody’s business but yours. At ProxySite.com, we stand between your web use and anyone who tries to sneak a peek at it. Instead of connecting directly to a website, let us connect to the website and send it back to you, and no one will know where you’ve been. Big Brother (or other, less ominous snoops) won’t be able to look over your shoulder and spy on you to see what you’re reading, watching or saying.
Nice research paper on Quantum Neural Networks for BMI related technologies. This is not a new article and more of a study published in 2014. Quantum Bio will change BMI.
Another version of this topic.
A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics.
Although this article is 2 years old; it covers one of the foundational areas of Quantum Biology.
Figure legend:
You can see in the enclosed figure the quantum entanglement phenomenon in the closely self-assembled two synthesized protocells system due to the photo excited electron charge transfer from one protocell to another that leads to closer self-assembly and exchange of energy and information.
Visualization of the electron charge tunneling associated with the 6th (467.3 nm) excited state. The transition is mainly from squarine molecule of the first protocell situated in the bottom of this bi cellular system to precursor of fatty acid (pFA) molecule of the second subsystem (in the top) and little from the 1,4-bis(N, N-dimethylamino)naphthalene molecule (in the top-right) to the same pFA molecule of the second subsystem (in the top). The electron cloud hole is indicated by the dark blue color while the transferred electron cloud location is designated by the gray color.
As a result, these nonlinear quantum interactions compressed the overall molecular system resulting in a smaller gap between the HOMO and LUMO electron energy levels which allows enhanced tunneling of photoexcited electrons from the sensitizer squarine and (1,4-bis(N, N-dimethylamino)naphthalene) to the pFA molecule resulting in its cleavage. The new fatty acid joins the existing minimal cell thus increasing it in size. After reaching some critical size, the minimal cell should divide (i.e. self-replicate) into two separate smaller minimal cells.
Cannot wait to see the outcomes as it will prove how Quantum principles are in fact a core peice in biology that will open up more innovation in areas like BMI, cell circuitry, etc.
The Defense Advanced Research Projects Agency will conduct a Proposers Day via webcast on Feb. 21 to discuss the RadioBio program that aims to determine whether purposeful signaling through electromagnetic waves occurs between biological cells.
“If we can prove that purposeful signaling is happening, the next step would be to discover how the process works,” Mike Fiddy, DARPA program manager, said in a statement released Tuesday.
“This insight could eventually lead to a broad range of technologies important in biology as well as new small antenna designs, and other innovative concepts for communication systems in ever increasing cluttered electromagnetic environments,” Fiddy added.
This is definitely a share that is interesting to many studying synthetic organs and their acceptance into the human body as well as the work occurring on Quantum biology as well.
The goal of in vitro and in vivo toxicity testing is to identify compounds that would predict adverse reactions in humans. Olson et al. found that only 70% of human toxicity was predicted from animal testing. Currently we rely on traditional toxicity testing in animals, a 1930’s methodology that is now challenged due to questionable relevance to human risk, high cost, ethical concerns, and throughput that is too limited for the nearly 80,000 industrial chemicals not yet tested for safety. Additionally, testing usually extrapolates acute, high dose animal results to chronic, low dose human exposures, thereby risking rejection or limiting the use of drugs, industrial chemicals or consumer products. Moreover, the ability of lab animal target organ toxicity to predict dose-limiting toxicity in the corresponding human organ varies widely, from a low of 30% for human cutaneous toxicity, to 50–60% for human hepatotoxicity, to a high of 90% for hematological drug toxicity. Animal drug efficacy models are also notoriously discordant. In an analysis of six drugs to treat head injury, hemorrhage, acute ischemic stroke, neonatal respiratory distress syndrome, and osteoporosis, it was found that efficacy was similar in animals and humans for three drugs but was dissimilar for another three. In oncology drug development, animal models often over-predict anti-tumor efficacy in humans3,4. Examples such as these highlight the need to continue research into methods that reduce the dependence on laboratory animals for toxicity testing of environmental chemicals, determine efficacy and toxicity in drug development, serve as a mimic of human diseases, and provide patient-specific guidance in the emerging field of precision medicine.
Recent advances in bioengineered materials, microfluidic technology, and the availability of human primary, immortalized, and induced pluripotent stem cell (iPSC)-derived cells are enabling development of human microphysiological systems (MPS), sometimes called “organs-on-a-chip” or “human-on-a-chip,” that use multiple organ-specific human cells to recapitulate many functional and structural properties of a human organ. It is now generally accepted and supported by data that cellular responses to drugs in most human organs are more accurately approximated in 3D cell cultures than in traditional static 2D cell cultures5,6. Microfluidic perfusion further improves model performance by providing a flow of nutrients and oxygen and the removal of waste products from the cell cultures. Physiologically relevant flow increases oxygen consumption, Krebs cycle activity and secretion of synthesized proteins, and decreases expression of the hypoxia HIF1 gene. Flow also improves the absorption and metabolism of compounds like benzo[a]pyrene6,8,9. The large number of recent publications reviewing organ MPS models indicates a high degree of interest by industrial and academic researchers, granting agencies and other stakeholders10,11,12,13. In addition to the stand-alone MPS, investigators are linking MPS to study organ-organ functional interactions, efficacy, PK and toxicology14,15,16,17,18.
An obvious approach to linking organs is direct coupling of the media stream outflow from one organ into the inflow of the next by use of tubing or a connecting channel. Some limitations to this approach include the requirement for a common medium, difficulty in reducing metabolic wastes to the next organ, organ-specific flow rates and adequate oxygenation of all modules in the system19. These requirements are most easily addressed when the linked organ modules are designed and developed at the same time and in the same laboratory, but even when the organ modules are co-developed, the proper scaling between organ modules is a significant design and calculation challenge. Although organ modules can be sized using allometric scaling20, the resulting functional capacity of the individual organ models may not scale the same.