Toggle light / dark theme

Researchers see path to quantum computing at room temperature

Army researchers predict quantum computer circuits that will no longer need extremely cold temperatures to function could become a reality after about a decade.

For years, solid-state quantum technology that operates at room temperature seemed remote. While the application of transparent crystals with had emerged as the most likely route to this milestone, the plausibility of such a system always remained in question.

Now, Army scientists have officially confirmed the validity of this approach. Dr. Kurt Jacobs, of the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory, working alongside Dr. Mikkel Heuck and Prof. Dirk Englund, of the Massachusetts Institute of Technology, became the first to demonstrate the feasibility of a quantum logic gate comprised of and optical crystals.

Transhumanism 2.0 (Full Documentary)

TABLE OF CONTENTS —————
:00–15:11 : Introduction
:11–36:12 CHAPTER 1: POSTHUMANISM
a. Neurotechnology b. Neurophilosophy c. Teilhard de Chardin and the Noosphere.

—————————————————————————————–
POSTHUMAN TECHNOLOGY
—————————————————————————————–

:12–54:39 CHAPTER 2 : TELEPATHY/ MIND-READING
a. MRI
b. fMRI
c. EEG
d. Cognitive Liberty e. Dream-recording, Dream-economies f. Social Credit Systems g. Libertism VS Determinism.

:02:07–1:25:48 : CHAPTER 3 : MEMORY/ MIND-AUGMENTING
a. Memory Erasure and Neuroplasticity b. Longterm Potentiation (LTP/LTD)
c. Propanolol d. Optogenetics e. Neuromodulation f. Memory-hacking g. Postmodern Dystopias h. Total Recall, the Matrix, and Eternal Sunshine of the Spotless Mind i. Custom reality and identity.

:25:48–1:45:14 CHAPTER 4 : BCI/ MIND-UPGRADING
a. Bryan Johnson and Kernel b. Mark Zuckerberg and Neuroprosthetics c. Elon Musk, Neural Lace, and Neuralink d. Neurohacking, Neuroadvertizing, Neurodialectics e. Cyborgs, Surrogates, and Telerobotics f. Terminator, Superintelligence, and Merging with AI
g. Digital Analogs, Suffering, and Virtual Drugs h. Neurogaming and “Nervana” (technological-enlightenment)

:45:14 −2:02:57 CHAPTER 5 : CONNECTOME/ MIND-MAPPING

Imaging nematic transitions in iron pnictide superconductors

Researchers at Stanford University have recently carried out an in-depth study of nematic transitions in iron pnictide superconductors. Their paper, published in Nature Physics, presents new imaging data of these transitions collected using a microscope they invented, dubbed the scanning quantum cryogenic atom microscope (SQCRAMscope).

“We invented a new type of scanning probe microscope a few years ago,” Benjamin L. Lev, the researcher who led the study, told Phys.org. “One can think of it like a normal optical microscope, but instead of the lens focused on some sample slide, the focus is on a quantum gas of atoms that are levitated near the sample.”

In the new microscope invented by Lev and his colleagues, atoms are levitated from an ‘atom chip’ trapping device using magnetic fields, until they are merely a micron above the sample slide. These atoms can transduce the magnetic fields that emanate from the sample into the light collected by the microscope’s lens. As a result, SQCRAMscope can be used to image magnetic fields.

TAMA300 blazes trail for improved gravitational wave astronomy

Researchers at the National Astronomical Observatory of Japan (NAOJ) have used the infrastructure of the former TAMA300 gravitational wave detector in Mitaka, Tokyo, to demonstrate a new technique to reduce quantum noise in detectors. This new technique will increase the sensitivity of the detectors comprising a collaborative worldwide gravitational wave network, allowing them to observe fainter waves.

When it began observations in 2000, TAMA300 was one of the world’s first large-scale interferometric gravitational wave detectors. At that time TAMA300 had the highest in the world, setting an upper limit on the strength of gravitational wave signals; but the first detection of actual gravitational waves was made 15 years later in 2015 by LIGO. Since then, technology has improved to the point that modern detectors are observing several signals per month. The obtained from these observations are already impressive, and many more are expected in the coming decades. TAMA300 is no longer participating in observations, but is still used as a testbed for new technologies to improve other detectors.

The sensitivity of current and future gravitational wave detectors is limited at almost all the frequencies by caused by the effects of vacuum fluctuations of the electromagnetic fields. But even this inherent quantum can be sidestepped. It is possible to manipulate the vacuum fluctuations to redistribute the quantum uncertainties, decreasing one type of noise at the expense of increasing a different, less obstructive type of noise. This technique, known as vacuum squeezing, has already been implemented in gravitational wave detectors, greatly increasing their sensitivity to higher frequency gravitational waves. But the optomechanical interaction between the and the mirrors of the detector causes the effect of vacuum squeezing to change depending on the frequency. So at low frequencies, vacuum squeezing increases the wrong type of noise, actually degrading sensitivity.

Applying quantum-impurity theory to quantum fluids of light

A Monash-led study develops a new approach to directly observe correlated, many-body states in an exciton-polariton system that go beyond classical theories.

The study expands the use of quantum impurity theory, currently of significant interest to the cold-atom physics community, and will trigger future experiments demonstrating many-body quantum correlations of microcavity polaritons.

New findings suggest laws of nature ‘downright weird,’ not as constant as previously thought

Not only does a universal constant seem annoyingly inconstant at the outer fringes of the cosmos, it occurs in only one direction, which is downright weird.

Those looking forward to a day when science’s Grand Unifying Theory of Everything could be worn on a t-shirt may have to wait a little longer as astrophysicists continue to find hints that one of the cosmological constants is not so constant after all.

In a paper published in Science Advances, scientists from UNSW Sydney reported that four new measurements of light emitted from a quasar 13 billion light years away reaffirm past studies that found tiny variations in the .

Quantum electrodynamics experiment ‘major step toward’ large-scale implementation

The fundamental laws of physics are based on symmetries that determine the interactions between charged particles, among other things. Using ultracold atoms, researchers at Heidelberg University have experimentally constructed the symmetries of quantum electrodynamics. They hope to gain new insights for implementing future quantum technologies that can simulate complex physical phenomena. The results of the study were published in the journal Science.

The theory of quantum electrodynamics deals with the electromagnetic interaction between electrons and light particles. It is based on so-called U symmetry, which, for instance, specifies the movement of particles. With their experiments, the Heidelberg physicists, under the direction of Junior Professor Dr. Fred Jendrzejewski, seek to advance the efficient investigation of this complex physical theory. They recently experimentally realized one elementary building block. “We see the results of our research as a major step toward a platform built from a chain of properly connected for a large-scale implementation of quantum in ,” explains Prof. Jendrzejewski, who directs an Emmy Noether group at Heidelberg University’s Kirchhoff Institute for Physics.

According to the researchers, one possible application would be developing large-scale quantum devices to simulate complex physical phenomena that cannot be studied with particle accelerators. The elementary block developed for this study could also benefit the investigation of problems in materials research, such as in strongly interacting systems that are difficult to calculate.

Bose-Einstein condensate: Magnetic particles behave repulsively

Data transmission that works by means of magnetic waves instead of electric currents: For many scientists, this is the basis of future technologies that will make transmission faster and individual components smaller and more energy-efficient. Magnons, the particles of magnetism, serve as moving information carriers. Almost 15 years ago, researchers at the University of Münster (Germany) succeeded for the first time in achieving a novel quantum state of magnons at room temperature—a Bose-Einstein condensate of magnetic particles, also known as a ‘superatome,’ i.e. an extreme state of matter that usually occurs only at very low temperatures.

/* */