Toggle light / dark theme

Researchers have created the fastest man-made rotor in the world, which they believe will help them study quantum mechanics.

At more than 60 billion revolutions per minute, this machine is more than 100,000 times faster than a high-speed dental drill.

“This study has many applications, including ,” said Tongcang Li, an assistant professor of physics and astronomy, and electrical and computer engineering, at Purdue University. “We can study the extreme conditions different materials can survive in.”

Read more

A commercially available “quantum computer” has been on the market since 2011, but it’s controversial. The D-Wave machine is nothing like other quantum computers, and until recently, scientists have doubted that it was even truly quantum at all. But the company has released an important new result, one that in part realizes Richard Feynman’s initial dreams for a quantum computer.

Scientists from D-Wave announced they have simulated a large quantum mechanical system with their 2000Q machine—essentially a cube of connected bar magnets. The D-Wave can’t take on the futuristic, mostly non-physics-related goals that many people have for quantum computers, such as finding solutions in medicine, cybersecurity, and artificial intelligence. Nor does it work the same way as the rest of the competition. But it’s now delivering real physics results. It’s simulating a quantum system.

Read more

Transistors are tiny switches that form the bedrock of modern computing; billions of them route electrical signals around inside a smartphone, for instance.

Quantum computers will need analogous hardware to manipulate quantum information. But the design constraints for this new technology are stringent, and today’s most advanced processors can’t be repurposed as quantum devices. That’s because quantum information carriers, dubbed qubits, have to follow different rules laid out by quantum physics.

Scientists can use many kinds of quantum particles as qubits, even the photons that make up . Photons have added appeal because they can swiftly shuttle information over long distances, and they are compatible with fabricated chips. However, making a quantum transistor triggered by light has been challenging because it requires that the photons interact with each other, something that doesn’t ordinarily happen on its own.

Read more