Menu

Blog

Archive for the ‘quantum physics’ category: Page 652

May 17, 2019

Physicists Think You Could Be Rescued from a Black Hole — But Don’t Risk It

Posted by in categories: cosmology, quantum physics

DENVER — Researchers have developed a new, unspeakably dangerous, and incredibly slow method of crossing the universe. It involves wormholes linking special black holes that probably don’t exist. And it might explain what’s really going on when physicists quantum-teleport information from one point to another — from the perspective of the teleported bit of information.

Daniel Jafferis, a Harvard University physicist, described the proposed method at a talk April 13 here at a meeting of the American Physical Society. This method, he told his assembled colleagues, involves two black holes that are entangled so that they are connected across space and time.

Read more

May 17, 2019

New quantum tunneling application captures electricity from Earth’s heat

Posted by in category: quantum physics

Researchers have learned how to produce electricity from Earth’s excess infrared radiation and waste heat through the unusual physics of quantum tunneling.

Read more

May 17, 2019

Quantum Teleportation Is Sci-Fi Technology in Real Life

Posted by in category: quantum physics

Read more

May 17, 2019

Quantum bit communication breaks distance record

Posted by in category: quantum physics

Two new studies show quantum bits connecting over the longest distance ever and also via sound.

Read more

May 17, 2019

Quantum cloud computing with self-check

Posted by in categories: chemistry, computing, particle physics, quantum physics

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists first simulated the spontaneous formation of a pair of elementary particles with a digital quantum computer at the University of Innsbruck. Due to the error rate, however, more complex simulations would require a large number of quantum bits that are not yet available in today’s quantum computers. The analog simulation of quantum systems in a quantum computer also has narrow limits. Using a new method, researchers around Christian Kokail, Christine Maier und Rick van Bijnen at the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences have now surpassed these limits. They use a programmable ion trap quantum computer with 20 quantum bits as a quantum coprocessor, in which quantum mechanical calculations that reach the limits of classical computers are outsourced.

Read more

May 16, 2019

Atomically thin quantum light-emitting diodes

Posted by in categories: computing, quantum physics

Atomically thin transition metal dichalcogenides hold promise as scalable single-photon sources. Here, the authors demonstrate all-electrical, single-photon generation in tungsten disulphide and diselenide, achieving charge injection into the layers, containing quantum emitters.

Read more

May 16, 2019

D-Wave Unveils Higher-Performance 2000Q Quantum Processor

Posted by in category: quantum physics

Read more

May 16, 2019

Entangled-photon gyroscope overcomes classical limit

Posted by in categories: quantum physics, transportation

Fiber optic gyroscopes, which measure the rotation and orientation of airplanes and other moving objects, are inherently limited in their precision when using ordinary classical light. In a new study, physicists have experimentally demonstrated for the first time that using entangled photons overcomes this classical limit, called the shot-noise limit, and achieves a level of precision that would not be possible with classical light.

The physicists, led by Matthias Fink and Rupert Ursin at the Austrian Academy of Sciences and the Vienna Center for Quantum Science and Technology, have published a paper on the entanglement-enhanced fiber-optic gyroscope in a recent issue of the New Journal of Physics.

“We have demonstrated that the generation of entangled photons has reached a level of technical maturity that enables us to perform measurements with sub-shot noise accuracy in harsh environments,” Fink told Phys.org.

Continue reading “Entangled-photon gyroscope overcomes classical limit” »

May 16, 2019

Holographic imaging of electromagnetic fields using electron-light quantum interference

Posted by in categories: encryption, energy, holograms, quantum physics

In conventional holography a photographic film can record the interference pattern of monochromatic light scattered from the object to be imaged with a reference beam of un-scattered light. Scientists can then illuminate the developed image with a replica of the reference beam to create a virtual image of the original object. Holography was originally proposed by the physicist Dennis Gabor in 1948 to improve the resolution of an electron microscope, demonstrated using light optics. A hologram can be formed by capturing the phase and amplitude distribution of a signal by superimposing it with a known reference. The original concept was followed by holography with electrons, and after the invention of lasers optical holography became a popular technique for 3D imaging macroscopic objects, information encryption and microscopy imaging.

However, extending holograms to the ultrafast domain currently remains a challenge with electrons, although developing the technique would allow the highest possible combined spatiotemporal resolution for advanced imaging applications in condensed matter physics. In a recent study now published in Science Advances, Ivan Madan and an interdisciplinary research team in the departments of Ultrafast Microscopy and Electron Scattering, Physics, Science and Technology in Switzerland, the U.K. and Spain, detailed the development of a hologram using local . The scientists obtained the electromagnetic holograms with combined attosecond/nanometer resolution in an ultrafast transmission electron microscope (UEM).

In the new method, the scientists relied on electromagnetic fields to split an electron wave function in a quantum of different energy states. The technique deviated from the conventional method, where the signal of interest and reference spatially separated and recombined to reconstruct the amplitude and phase of a signal of interest to subsequently form a hologram. The principle can be extended to any kind of detection configuration involving a periodic signal capable of undergoing interference, including sound waves, X-rays or femtosecond pulse waveforms.

Continue reading “Holographic imaging of electromagnetic fields using electron-light quantum interference” »

May 16, 2019

Researchers shed new light on atomic ‘wave function’

Posted by in categories: biotech/medical, quantum physics, space

Physicists have demonstrated a new way to obtain the essential details that describe an isolated quantum system, such as a gas of atoms, through direct observation. The new method gives information about the likelihood of finding atoms at specific locations in the system with unprecedented spatial resolution. With this technique, scientists can obtain details on a scale of tens of nanometers—smaller than the width of a virus.

Experiments performed at the Joint Quantum Institute (JQI), a research partnership between the National Institute of Standards and Technology (NIST) and the University of Maryland, use an optical lattice—a web of laser light that suspends thousands of —to determine the probability that an atom might be at any given location. Because each individual atom in the lattice behaves like all the others, a measurement on the entire group of atoms reveals the likelihood of an individual atom to be in a particular point in space.

Published in the journal Physical Review X, the JQI technique (and a similar technique published simultaneously by a group at the University of Chicago) can yield the likelihood of the atoms’ locations at well below the wavelength of the light used to illuminate the atoms—50 times better than the limit of what optical microscopy can normally resolve.

Continue reading “Researchers shed new light on atomic ‘wave function’” »