Toggle light / dark theme

Dr Patrick van der Smagt, Director, ArtificiaI Intelligence Research, Volkswagen AG — Head Argmax.AI

Fundamental Research On Ethical & Trustworthy Artificial Intelligence, For Health, Environment, And A Sustainable Future — Dr. Patrick van der Smagt, Ph.D., Director, ArtificiaI Intelligence Research, Volkswagen.


Dr. Patrick van der Smagt is Director of ArtificiaI Intelligence Research, Volkswagen AG, and Head of Argmax. AI (https://argmax.ai/), the Volkswagen Group Machine Learning Research Lab, in Munich, focusing on a range of research domains, including probabilistic deep learning for time series modelling, optimal control, reinforcement learning robotics, and quantum machine learning.

Dr. van der Smagt is also a research professor in the Computer Science faculty at Eötvös Loránd University in Budapest.

Dr. van der Smagt previously directed a lab as professor for machine learning and biomimetic robotics at the Technical University of Munich while leading the machine learning group at the research institute fortiss, and before that, founded and headed the Assistive Robotics and Bionics Lab at DLR, the German Aerospace Center.

Besides publishing numerous papers and patents on machine learning, robotics, and motor control, Dr. van der Smagt has won a number of awards, including the 2013 Helmholtz-Association Erwin Schrödinger Award, the 2014 King-Sun Fu Memorial Award, the 2013 Harvard Medical School/MGH Martin Research Prize, the 2018 Webit Best Implementation of AI Award, and best-paper awards at various machine learning and robotics conferences and journals.

This Insane Quantum Computer is IBM’s Last Chance

IBM’s new Quantum Computer breaks the current world record in terms of Qubits and ushers in a new era of quantum supremacy. It’s also IBM’s last chance of potentially undoing its rise and fall among the biggest tech companies in the world that has been occuring these last few years. The Eagle Quantum computer has 127 qubits and can outperform the fastest supercomputers in the world in certain tasks and calculations. Whether or not Google’s Quantum AI company will come back from behind is currently uncertain. But one thing is for sure: The future of Quantum Computers does look very bright.

TIMESTAMPS:
00:00 IBM’s Last Chance.
01:23 The competetive field of Quantum Computing.
02:19 How this Quantum Computer was made.
04:00 What is Neven’s Law?
06:35 And the goal of all this is…
09:22 Last Words.

#ibm #quantumcomputer #ai

This new startup has built a record-breaking 256-qubit quantum computer

At long last, physicists from Harvard and MIT have found the killer application for quantum computing: a Mario Bros. GIF made from qubits. The qubits (quantum bits) can also be arranged in a Space Invaders design, or Tetris, or any other shape—your geometrical wish is the qubits’ command.

The GIFs are from QuEra Computing, a Boston startup emerging from stealth, to show off the programmability of their 256-qubit quantum simulator —a special-purpose quantum computer built for solving certain types of problems.

A new quantum computer startup from Harvard, MIT raises $17M

OAKLAND, Calif. Nov 17 (Reuters) — A new quantum computer startup born from researchers at Harvard University and Massachusetts Institute of Technology (MIT) called QuEra Computing said on Wednesday it raised $17 million from investors, including Japanese e-commerce giant Rakuten Inc (4755.T).

It’s the latest quantum computer hardware maker to come out of the lab at a time when funding for the nascent technology is booming. read more

While there are various technologies for creating so-called quantum bits or qubits where the computations happen, QuEra’s qubits use neutral atoms in a vacuum chamber and use lasers to cool and control them.

New material could be two superconductors in one

MIT physicists and colleagues have demonstrated an exotic form of superconductivity in a new material the team synthesized only about a year ago. Although predicted in the 1960s, until now this type of superconductivity has proven difficult to stabilize. Further, the scientists found that the same material can potentially be manipulated to exhibit yet another, equally exotic form of superconductivity.

The work was reported in the Nov. 3 issue of the journal Nature.

The demonstration of finite momentum superconductivity in a layered crystal known a natural superlattice means that the material can be tweaked to create different patterns of superconductivity within the same sample. And that, in turn, could have implications for and more.

A dynamical quantum Cheshire Cat effect and implications for counterfactual communication

In quantum mechanics, counterfactual behaviours are generally associated with particles being affected by events taking place where they can’t be found. Here, the authors consider extended quantum Cheshire cat scenarios where a particle can be influenced in regions where only its disembodied property has entered.

New algorithms advance the computing power of early-stage quantum computers

A group of scientists at the U.S. Department of Energy’s Ames Laboratory has developed computational quantum algorithms that are capable of efficient and highly accurate simulations of static and dynamic properties of quantum systems. The algorithms are valuable tools to gain greater insight into the physics and chemistry of complex materials, and they are specifically designed to work on existing and near-future quantum computers.

Scientist Yong-Xin Yao and his research partners at Ames Lab use the power of advanced computers to speed discovery in condensed matter physics, modeling incredibly complex quantum mechanics and how they change over ultra-fast timescales. Current high performance computers can model the properties of very simple, small quantum systems, but larger or more rapidly expand the number of calculations a computer must perform to arrive at an , slowing the pace not only of computation, but also discovery.

“This is a real challenge given the current early-stage of existing quantum computing capabilities,” said Yao, “but it is also a very promising opportunity, since these calculations overwhelm classical computer systems, or take far too long to provide timely answers.”

/* */