Menu

Blog

Archive for the ‘quantum physics’ category: Page 626

Jul 22, 2019

Singularity University: Rearranging Atoms With Ralph Merkle

Posted by in categories: education, particle physics, quantum physics, robotics/AI, singularity

“If you rearrange the atoms in coal, you get diamond. If you rearrange the atoms in sand, you get silicon. How atoms are arranged is fundamental to all material aspects of life,” says Ralph Merkle, currently senior research chair at the Institute for Molecular Manufacturing. He’s a large, pear-shaped man who, as he speaks, waves his arms far more energetically than his physique would imply. He modulates his tone dramatically for effect, often humorous.

Those words kick off day 2 at the Singularity University Executive Program. The curriculum divides roughly into three days of intensive classroom introductions to critical tech domains, three days of visits to Silicon Valley companies, and two days of workshops devoted to specific industries, plus a final day to wrap up. On Saturday I settled gingerly into a lightly padded metal chair for highly compressed, sometimes super technical, up-to-the-minute overviews of artificial intelligence, robotics, networking, computing, and quantum computing. (Forecast: sunny! With patchy clouds and fog.) That took until dinner time with only a quick break for lunch, which was filled with presentations by graduates of SU’s nine-week summer program.

You’ve read your last complimentary article this month. To read the full article, SUBSCRIBE NOW. If you’re already a subscriber, please sign in and and verify your subscription.

Jul 22, 2019

A Faster Way to Rearrange Atoms Could Lead to Powerful Quantum Sensors

Posted by in categories: computing, engineering, particle physics, quantum physics

The fine art of adding impurities to silicon wafers lies at the heart of semiconductor engineering and, with it, much of the computer industry. But this fine art isn’t yet so finely tuned that engineers can manipulate impurities down to the level of individual atoms.

As technology scales down to the nanometer size and smaller, though, the placement of individual impurities will become increasingly significant. Which makes interesting the announcement last month that scientists can now rearrange individual impurities (in this case, single phosphorous atoms) in a sheet of graphene by using electron beams to knock them around like croquet balls on a field of grass.

The finding suggests a new vanguard of single-atom electronic engineering. Says research team member Ju Li, professor of nuclear science and engineering at MIT, gone are the days when individual atoms can only be moved around mechanically—often clumsily on the tip of a scanning tunneling microscope.

Jul 22, 2019

Quantum Darwinism, an Idea to Explain Objective Reality, Passes First Tests

Posted by in category: quantum physics

Three experiments have vetted quantum Darwinism, a theory that explains how quantum possibilities can give rise to objective, classical reality.

Jul 22, 2019

The breakthrough of quantum sensors is due to vibrations that occur naturally in artificial atom

Posted by in categories: particle physics, quantum physics

When one atom emits light, they do so in a separate package called a photon. When this light is measured, this discrete or granular nature leads to small brightness fluctuations because two or more photons never emit simultaneously.

Jul 21, 2019

Physicists Just Discovered The First Elusive Candidate For a 3D Quantum Spin Liquid

Posted by in categories: particle physics, quantum physics

Physicists in the US have discovered a material that could qualify as the first known three-dimensional example of a quantum spin liquid — an exotic theoretical phase of matter.

Quantum spin liquids were first predicted by scientists back in the 1970s. While researchers have studied them for decades, these phases largely remain a theoretical concept, although that’s not the same as saying they don’t exist.

To confuse you further, quantum spin liquids aren’t actually liquids, but a kind of solid, magnetic matter that exhibits a strange form of behaviour at the subatomic particle level, specifically in terms of its electrons.

Jul 21, 2019

AI, quantum computing and 5G could make criminals more dangerous than ever, warn police

Posted by in categories: internet, law enforcement, quantum physics, robotics/AI

Law enforcement needs to be innovative and act now in order to keep face with near future criminal threats, warns ‘Do criminals dream of electric sheep’ paper.

Jul 21, 2019

What is post-quantum cryptography?

Posted by in categories: computing, encryption, quantum physics

The race is on to create new ways to protect data and communications from the threat posed by super-powerful quantum computers.

Jul 20, 2019

Physicists Have Reversed Time on The Smallest Scale

Posted by in categories: energy, quantum physics

It’s easy to take time’s arrow for granted — but the gears of physics actually work just as smoothly in reverse. Maybe that time machine is possible after all?

An experiment earlier this year shows just how much wiggle room we can expect when it comes to distinguishing the past from the future, at least on a quantum scale. It might not allow us to relive the 1960s, but it could help us better understand why not.

Researchers from Russia and the US teamed up to find a way to break, or at least bend, one of physics’ most fundamental laws on energy.

Jul 19, 2019

‘Majorana Photons’: New super-class of photons can travel with different wavefronts

Posted by in categories: neuroscience, quantum physics

Hailed as a pioneer by Photonics Media for his previous discoveries of supercontinuum and Cr tunable lasers, City College of New York Distinguished Professor of Science and Engineering Robert R. Alfano and his research team are claiming another breakthrough with a new super-class of photons dubbed “Majorana photons.” They could lead to enhanced information on quantum-level transition and imaging of the brain and its working.

Alfano’s group based its research on the fact that photons, while possessing salient properties of , wavelength, coherence and spatial modes, take on several forms. “Photons are amazing and are all not the same,” Alfano says.

Their focus “was to use a special super-form of photons, which process the entanglement twists of both polarizations and the wavefront … and would propagate deeper in brain tissues, microtubules and neuron cells, giving more fundamental information of the brain than the conventional forms.”

Jul 19, 2019

NASA’s Fuel-less Space Engine Has Been Tested

Posted by in categories: quantum physics, space travel

Spaceflight is hard. Blasting heavy cargo, spacecraft, and maybe people to respectable speeds over interplanetary distances requires an amount of propellant too massive for current rockets to haul into the void. That is, unless you have an engine that can generate thrust without fuel.

It sounds impossible, but scientists at NASA’s Eagleworks Laboratories have been building and testing just such a thing. Called an EmDrive, the physics-defying contraption ostensibly produces thrust simply by bouncing microwaves around inside a closed, cone-shaped cavity, no fuel required.

The device last made headlines in late 2016 when a leaked study reported the results of the latest round of NASA testing. Now, independent researchers in Germany have built their own EmDrive, with the goal of testing innovative propulsion concepts and determining whether their seeming success is real or an artifact.