Toggle light / dark theme

World-first quantum dot LED lights made from discarded rice husks

From TVs, to solar cells, to cutting-edge cancer treatments, quantum dots are beginning to exhibit their unique potential in many fields, but manufacturing them at scale would raise some issues concerning the environment. Scientists at Japan’s Hiroshima University have demonstrated a greener path forward in this area, by using discarded rice husks to produce the world’s first silicon quantum dot LED light.

“Since typical quantum dots often involve toxic material, such as cadmium, lead, or other heavy metals, environmental concerns have been frequently deliberated when using nanomaterials,” said Ken-ichi Saitow, lead study author and a professor of chemistry at Hiroshima University. “Our proposed process and fabrication method for quantum dots minimizes these concerns.”

The type of quantum dots pursued by Saitow and his team are silicon quantum dots, which eschew heavy metals and offer some other benefits, too. Their stability and higher operating temperatures makes them one of the leading candidates for use in quantum computing, while their non-toxic nature also makes them suitable for use in medical applications.

Spin keeps electrons in line in iron-based superconductor

Researchers from PSI’s Spectroscopy of Quantum Materials group together with scientists from Beijing Normal University have solved a puzzle at the forefront of research into iron-based superconductors: the origin of FeSe’s electronic nematicity. Using Resonant inelastic X-ray scattering (RIXS) at the Swiss Light Source (SLS), they discovered that, surprisingly, this electronic phenomenon is primarily spin driven.

Electronic nematicity is believed to be an important ingredient in high-temperature superconductivity, but whether it helps or hinders it is still unknown.

Their findings are published in Nature Physics (“Spin-excitation anisotropy in the nematic state of detwinned FeSe”).

“Visualizing the Proton” — Physicists’ Innovative Animation Depicts the Subatomic World in a New Way

Try to picture a proton — the tiny, positively charged particle within an atomic nucleus — and you may envision a familiar, textbook diagram: a bundle of billiard balls representing quarks and gluons. From the solid sphere model first proposed by John Dalton in 1,803 to the quantum model put forward by Erwin Schrödinger in 1926, there is a storied timeline of physicists attempting to visualize the invisible.

Scientists Just Measured a Mechanical Quantum System Without Destroying It

There’s a key aspect of quantum computing you may not have thought about before. Called ‘quantum non-demolition measurements’, they refer to observing certain quantum states without destroying them in the process.

If we want to put together a functioning quantum computer, not having it break down every second while calculations are made would obviously be helpful. Now, scientists have described a new technique for recording quantum non-demolition measurements that shows a lot of promise.

In this case, the research involved mechanical quantum systems – objects that are relatively large in quantum computing terms, but exceedingly tiny for us. They use mechanical motion (such as vibration) to handle the necessary quantum magic, and they can be combined with other quantum systems too.

Organic Transistors Explained. Printing CPUs at Home. What is Smart Skin

Slow processing… but good for display devices, interacting with other systems, bio-sensors/health monitoring, etc.


In this video I explain Organic Flexible CPUs and Organic Transistors. What is the-state-of-the-art of Organic Electronics? If this technology can replace Silicon Chips or not?
#CPU #OrganicCPU #FlexibleCPU

***
WATCH NEXT:

➞ Silicon Quantum Computer from Intel: [https://youtu.be/j9eYQ_ggqJk](https://youtu.be/j9eYQ_ggqJk)
➞ New WoW Processor explained: [https://youtu.be/-NeRIrRSFs4](https://youtu.be/-NeRIrRSFs4)
➞ DOJO AI Accelerator: [https://youtu.be/QurtwJdb5Ew](https://youtu.be/QurtwJdb5Ew)

***

Controlling Single Photons with Rydberg Superatoms

New schemes based on Rydberg superatoms placed in optical cavities can be used to manipulate single photons with high efficiency.

The past decade has witnessed swift progress in the development and application of quantum technologies. Many promising directions involve using photons, the smallest energy packets of light, as carriers of quantum information [1]. Photons at optical wavelengths can be quickly transported through optical fibers over long distances and with negligible noise, even at room temperature. Unfortunately, one drawback is that photons do not normally interact with each other, which makes it challenging to manipulate a photon with another photon. Optical photons also couple weakly with other quantum systems, such as superconducting qubits, which makes it hard to interface these platforms with photons.

Forever Battery: QuantumScape’s Holy Grail of Energy

A “forever battery” is much smaller and more energy-dense than lithium-ion. They’ll change the world and unlock a trillion-dollar revolution.


In this week’s episode, Aaron and I discuss what could be the “holy grail” of energy: the solid-state — or forever battery. Obviously, lithium-ion cells are the status quo of today. And they power pretty much everything, like your smartphone, laptop and electric vehicle.

However, since they comprise liquids and can only be compressed so much, they aren’t the most energy-dense. And we see this limitation all around us. It’s why that EV in your parking space can’t drive long ranges or recharge very fast. And it’s why that smartphone in your pocket will run out of juice by the end of the day.

The truth about the EV Revolution that’s got everyone hyped is that it won’t boom until we make better batteries. Enter solid-state battery technology — much smaller, more effective and energy-dense than its liquid-state counterparts. This “forever battery,” as insiders have dubbed it, will fundamentally alter the way things work in society. And it’ll unlock a potentially multi-trillion-dollar revolution in the process.

Scientist bridges the gap between quantum simulators and quantum computers

A researcher from Skoltech has filled in the gaps connecting quantum simulators with more traditional quantum computers, discovering a new computationally universal model of quantum computation, the variational model. The paper was published as a Letter in the journal Physical Review A. The work made the Editors’ Suggestion list.

A is built to share properties with a target quantum system we wish to understand. Early quantum simulators were ‘dedicated’—that means they could not be programmed, tuned or adjusted and so could mimic one or very few target systems. Modern quantum simulators enable some control over their settings, offering more possibilities.

In contrast to quantum simulators, the long-promised quantum computer is a fully programmable quantum system. While building a fully programmable quantum remains elusive, noisy quantum processors that can execute short quantum programs and offer limited programmability are now available in leading laboratories around the world. These quantum processors are closer to the more established quantum simulators.

Xanadu announces programmable photonic quantum chip able to execute multiple algorithms

A team of researchers and engineers at Canadian company Xanadu Quantum Technologies Inc., working with the National Institute of Standards and Technology in the U.S., has developed a programmable, scalable photonic quantum chip that can execute multiple algorithms. In their paper published in the journal Nature, the group describes how they made their chip, its characteristics and how it can be used. Ulrik Andersen with the Technical University of Denmark has published a News & Views piece in the same journal issue outlining current research on quantum computers and the work by the team in Canada.

Scientists around the world are working to build a truly useful quantum that can perform calculations that would take traditional computers millions of years to carry out. To date, most such efforts have been focused on two main architectures—those based on superconducting electrical circuits and those based on trapped-ion technology. Both have their advantages and disadvantages, and both must operate in a supercooled environment, making them difficult to scale up. Receiving less attention is work using a photonics-based approach to building a quantum computer. Such an approach has been seen as less feasible because of the problems inherent in generating quantum states and also of transforming such states on demand. One big advantage photonics-based systems would have over the other two architectures is that they would not have to be chilled—they could work at room temperature.

In this new effort, the group at Xanadu has overcome some of the problems associated with photonics-based systems and created a working programmable photonic quantum chip that can execute multiple algorithms and can also be scaled up. They have named it the X8 photonic quantum processing unit. During operation, the is connected to what the team at Xanadu describe as a “squeezed light” source—infrared laser pulses working with microscopic resonators. This is because the new system performs continuous variable quantum computing rather than using single-photon generators.

/* */