Toggle light / dark theme

Using microbrewery waste to synthesize carbon quantum dots

For a few years now, spent grain, the cereal residue from breweries, has been reused in animal feed. This material could also be used in nanotechnology. Professor Federico Rosei’s team at the Institut national de la recherche scientifique (INRS) has shown that microbrewery waste can be used as a carbon source to synthesize quantum dots. The work, done in collaboration with Claudiane Ouellet-Plamondon of the École de technologie supérieure (ÉTS), was published in the Royal Society of Chemistry’s journal RSC Advances.

Often considered “artificial atoms,” are used in the transmission of light. With a range of interesting physicochemical properties, this type of nanotechnology has been successfully used as a sensor in biomedicine or as LEDs in next generation displays. But there is a drawback. Current quantum dots are produced with heavy and toxic metals like cadmium. Carbon is an interesting alternative, both for its biocompatibility and its accessibility.

Nanostructured surfaces for future quantum computer chips

Quantum computers are one of the key future technologies of the 21st century. Researchers at Paderborn University, working under Professor Thomas Zentgraf and in cooperation with colleagues from the Australian National University and Singapore University of Technology and Design, have developed a new technology for manipulating light that can be used as a basis for future optical quantum computers. The results have now been published in Nature Photonics.

New optical elements for manipulating light will allow for more advanced applications in modern information technology, particularly in quantum computers. However, a major challenge that remains is non-reciprocal light propagation through nanostructured surfaces, where these surfaces have been manipulated at a tiny scale.

Professor Thomas Zentgraf, head of the working group for ultrafast nanophotonics at Paderborn University, explains that “in reciprocal propagation, light can take the same path forward and backward through a structure; however, non-reciprocal propagation is comparable to a one-way street where it can only spread out in one direction.”

Ultracold Bubbles on Space Station Open New Avenues of Quantum Research

Inside NASA’s Cold Atom Lab, scientists form bubbles from ultracold gas, shown in pink in this illustration. Lasers, also depicted, are used to cool the atoms, while an atom chip, illustrated in gray, generates magnetic fields to manipulate their shape, in combination with radio waves.

Credit: NASA/JPL-Caltech


Produced inside NASA’s Cold Atom Lab, the bubbles provide new opportunities to experiment with an exotic state of matter.

Atom Scale Manufacturing: The Path to Ultimate Green Technologies | Robert Wolkow | TEDxYYC

Manufacturing with atoms has been the siren’s call for many researchers who believed it was the key that could unlock enormous new potential in how we build things. We could develop products that are perfectly precise, contain zero waste and that are 1000x more energy efficient. The problem has always been the same: How? Until now. Wolkow has taken a leading role in laying a new, stable foundation for the world to begin building on the tiniest of scales. Robert Wolkow is a Professor in the Department of Physics, iCORE Chair of Nanoscale Information and Communications Technology at the University of Alberta and Fellow of the Royal Society of Canada. He is also the Principal Research Officer and Nanoelectronics Program Coordinator at the NRC Nanotechnology Research Centre (NRC-NANO), AITF Industrial Chair in Atom Scale Fabrication and CTO of Quantum Silicon Inc.

An award-winning innovator, Wolkow has had a leading role in discovering, altering and deploying atom scale properties of silicon. His years of fundamental advances have laid a broad foundation for practical applications. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

Quantum Artificial Intelligence | My PhD at MIT

Algorithms, Shor’s Quantum Factoring Algorithm for breaking RSA Security, and the Future of Quantum Computing.

▬ In this video ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
I talk about my PhD research at MIT in Quantum Artificial Intelligence. I also explain the basic concepts of quantum computers, and why they are superior to conventional computers for specific tasks. Prof. Peter Shor, the inventor of Shor’s algorithm and one of the founding fathers of Quantum Computing, kindly agreed to participate in this video.

▬ Follow me ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
LinkedIn: https://www.linkedin.com/in/samuel-bosch/
Instagram: https://www.instagram.com/samuel.bosch/

▬ Credits ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Some of the animations were taken from “Quanta Magazine” (Quantum Computers, Explained With Quantum Physics): https://www.youtube.com/channel/UCTpmmkp1E4nmZqWPS-dl5bg.

Other animations are from “Josh’s Channel” (How Quantum Computers Work): https://www.youtube.com/channel/UCnNEI3UdreSoQ6XUNcKoUeg.

The quantum circuit animations are from “Kurzgesagt – In a Nutshell” (Quantum Computers Explained – Limits of Human Technology): https://www.youtube.com/channel/UCsXVk37bltHxD1rDPwtNM8Q

Quantum Internet Is a Step Closer After Quantum Teleportation Breakthrough

Actually transporting quantum states over significant distances is tricky, though. Researchers have had some success transmitting messages tied up in the quantum states of photons over several hundred miles of optical cables, and also using satellite quantum communication to establish links over even greater distances. But the inevitable signal losses over either mode of communication mean that scaling up to the distances required for a true internet will be tricky.

One workaround is to exploit another quantum phenomenon called teleportation. This works much like the sci-fi concept used in shows like Star Trek, allowing information to be instantaneously transmitted from one place to another, theoretically over unlimited distances. And now, researchers from the Netherlands have provided the first practical demonstration of how this could work.

The team set up three quantum “nodes” called Alice, Bob, and Charlie, which are able to store quantum information in qubits—the quantum equivalent of bits in a computer made from nitrogen vacancy centers. These are tiny defects in diamonds that can be used to trap electrons and alter their quantum state. They then connected Alice to Bob and Bob to Charlie using optical fibers.

/* */