Toggle light / dark theme

Alive, Dead, and Hot: Schrödinger’s Cat Defies the Rules of Quantum Physics

Researchers have pulled off a quantum feat that defies traditional expectations—they’ve created Schrödinger cat states not from ultra-cold ground states, but from warm, thermally excited ones.

Using a superconducting qubit setup, the team demonstrated that quantum superpositions can exist even at higher temperatures, overturning the long-held belief that heat destroys quantum effects. This breakthrough not only validates Schrödinger’s original “hot cat” concept but also paves the way for more practical and accessible quantum technologies.

Schrödinger’s cat and hot quantum states.

MIND-STUFF: How William Clifford Connected Geometry, Matter, and Mind — VERSADOCO

What if the key to the universe was discovered over a century ago—and then forgotten?

In the late 19th century, a young math prodigy named William Clifford proposed a radical idea: that reality itself is woven from the same fabric as the mind. Long before Einstein, long before quantum theory, Clifford envisioned a world where matter, consciousness, and geometry are one.

His ideas were largely overlooked, seen as too speculative for the science of his time. Today, they look like the missing blueprint for a true Theory of Everything.

Is Clifford’s path one that science is only now catching up to?

Based on the original research by idb.kniganews “Clifford’s Path”

[ Subscribe ] and turn on notifications [ 🔔 ] so you don’t miss any videos.

The Schrödinger Equation Gets Practical: New Quantum Tool Simulates the Physics of the Real World

Quantum computers have the potential to solve certain problems far more efficiently than classical computers. In a recent development, researchers have designed a quantum algorithm to simulate systems of coupled masses and springs, known as coupled oscillators. These systems are fundamental in modeling a wide range of physical phenomena, from molecules to mechanical structures like bridges.

To simulate these systems, the researchers first translated the behavior of the coupled oscillators into a form of the Schrödinger equation, which describes how the quantum state of a system evolves over time. They then used advanced Hamiltonian simulation techniques to model the system on a quantum computer.

Hamiltonian methods provide a framework for understanding how physical systems evolve, connecting principles of classical mechanics with those of quantum mechanics. By leveraging these techniques, the researchers were able to represent the dynamics of N coupled oscillators using only about log(N) quantum bits (qubits), a significant reduction compared to the resources required by classical simulations.

Danish supercomputer to drive innovation

The Gefion AI Supercomputer (GAIS) project, which delivers Denmark’s first artificial intelligence (AI) turbo-charged supercomputer, has positioned Denmark as the most advanced of the Nordic region’s quantum computing investing nations.

It also serves to accelerate the use of AI to drive innovation across Denmark’s business and industrial sectors.

Built on the Nvidia DGX SuperPOD AI supercomputer, GAIS is powered by 1,528 Nvidia H100 Tensor Core graphics processing units (GPUs) and interconnected using Nvidia Quantum-2 InfiniBand networking.

Americans once again make headlines in computing with the discovery of a “quantum highway” that raises great hopes

A major breakthrough in quantum computing has just been achieved by American researchers at MIT. This innovation, dubbed the “quantum superhighway”, revolutionizes communication between quantum processors and opens up promising new prospects for the development of more powerful and efficient supercomputers.

Quantum computers today represent the cutting edge of computing , capable of solving problems far beyond the capabilities of conventional supercomputers. However, their efficiency depends on fast, precise communication between their various processors. This is precisely the challenge that American engineers have just met.

The innovation developed by the MIT team consists of an interconnection device enabling instant communication between quantum processors. Unlike traditional “point-to-point” link systems, which are prone to increasing errors during data transfer, this “quantum superhighway” promotes far more efficient “all-to-all” communication.

Space-time-topological events in photonic quantum walks

Combining space topology and time topology, topological states that are localized simultaneously in space and time are theoretically and experimentally demonstrated, potentially enabling the space-time topological shaping of light waves with applications in spatiotemporal wave control for imaging, communications and topological lasers.