Toggle light / dark theme

Now in Quantum: by Antonio deMarti iOlius, Patricio Fuentes, Román Orús, Pedro M. Crespo, and Josu Etxezarreta Martinez https://doi.org/10.22331/q-2024-10-10-1498


Antonio deMarti iOlius1, Patricio Fuentes2, Román Orús3,4,5, Pedro M. Crespo1, and Josu Etxezarreta Martinez1

1Department of Basic Sciences, Tecnun — University of Navarra, 20,018 San Sebastian, Spain. 2 Photonic Inc., Vancouver, British Columbia, Canada. 3 Multiverse Computing, Pio Baroja 37, 20008 San Sebastián, Spain 4 Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain 5 IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.

Get full text pdfRead on arXiv VanityComment on Fermat’s library.

#ibm #heron #quantumcomputer #quantumphysics #softwareengineering #developers #programming #artificialintelligence #ai #neuralnetworks #machinelearning #explorepage #financialmarkets #cryptography #business #productdevelopment #researchanddevelopment #computerscience #qubit #engineering #technology #startups #science #mathematics #innovation #invention

Immortality particles called quasiparticles face_with_colon_three


A collective excitation behaving as a single emergent entity, known as a quasiparticle, often becomes unstable when encountering a continuum of many-body excited states. However, under certain conditions, the result can be totally different.

Researchers at the Quantum Machines Unit at the Okinawa Institute of Science and Technology (OIST) are studying levitating materials – substances that can remain suspended in a stable position without any physical contact or mechanical support. The most common type of levitation occurs through magnetic fields. Objects such as superconductors or diamagnetic materials (materials repelled by a magnetic field) can be made to float above magnets to develop advanced sensors for various scientific and everyday uses.

Prof. Jason Twamley, head of the unit, and his team of OIST researchers and international collaborators, have designed a floating platform within a vacuum using graphite and magnets. Remarkably, this levitating platform operates without relying on external power sources and can assist in the development of ultra-sensitive sensors for highly precise and efficient measurements. Their results have been published in the journal Applied Physics Letters.

When an external magnetic field is applied to diamagnetic materials, these materials generate a magnetic field in the opposite direction, resulting in a repulsive force – they push away from the field. Therefore, objects made of diamagnetic materials can float above strong magnetic fields. For instance, in maglev trains, powerful superconducting magnets create a strong magnetic field with diamagnetic materials to achieve levitation, seemingly defying gravity.

When something draws us in like a magnet, we take a closer look. When magnets draw in physicists, they take a quantum look. Scientists from Osaka Metropolitan University and the University of Tokyo have successfully used light to visualize tiny magnetic regions, known as magnetic domains, in a specialized quantum material. Their study was published in Physical Review Letters.

A team of engineers, physicists and quantum specialists at Google Research has found that reducing noise to a certain level allows the company’s sycamore quantum chip to beat classical computers running random circuit sampling (RCS).

Imagine a future where indoor wireless communication systems handle skyrocketing data demands and do so with unmatched reliability and speed. Traditional radio frequency (RF) technologies like Wi-Fi and Bluetooth are beginning to struggle, plagued by limited bandwidth and increasing signal congestion.

Oak Ridge National Laboratory’s new RODAS technology provides detailed insights into atomic changes in materials, critical for advancing quantum computing.

The method’s ability to analyze materials like molybdenum disulfide without damaging them marks a significant improvement over traditional techniques, offering potential breakthroughs in material science.

A team of researchers led by the Department of Energy’s Oak Ridge National Laboratory has developed a novel method for observing changes in materials at the atomic level. This technique opens new avenues for advancing our understanding and development of materials critical for quantum computing and electronics.

Using a nanoscale structure that consisted of a sequential array of a source electrode, a quantum well, a tunneling barrier, a quantum dot, another tunneling barrier, and a drain electrode, researchers were able to suppress electron excitation and cool electrons to −228 °C (−378 °F) without external means at room temperature.

A team of researchers has discovered a way to cool electrons to −228 °C without external means and at room temperature, an advancement that could enable electronic devices to function with very little energy.

The process involves passing electrons through a quantum well to cool them and keep them from heating.

Quantum physicists have developed a new type of optical atomic clock, using quantum entanglement among strontium atoms to achieve unprecedented precision.

This breakthrough could significantly impact quantum computing and precision sensing, although it currently operates effectively for only milliseconds.

Quantum Advances in Timekeeping.