Toggle light / dark theme

Physicists at the Max Planck Institute of Quantum Optics (MPQ) have engineered the lightest optical mirror imaginable. The novel metamaterial is made of a single structured layer that consists only of a few hundred identical atoms. The atoms are arranged in the two dimensional array of an optical lattice formed by interfering laser beams. The research results are the first experimental observations of their kind in an only recently emerging new field of subwavelength quantum optics with ordered atoms. So far, the mirror is the only one of its kind. The results are today published in Nature.

Usually, mirrors utilize highly polished metal surfaces or specially coated optical glasses to improve performance in smaller weights. But physicists at MPQ now demonstrated for the very first time that even a single structured layer of a few hundred atoms could already form an optical , making it the lightest one imaginable. The new mirror is only several tens of nanometers thin, which is a thousand times thinner than the width of a human hair. The reflection, however, is so strong it could even be perceived with the pure human eye.

Earth, as we know it, is only teeming with life because of the influence of our Sun. Its light and heat provides every square meter of Earth — when it’s in direct sunlight — with a constant ~1500 W of power, enough to keep our planet at a comfortable temperature for liquid water to continuously exist on its surface. Just like the hundreds of billions of stars in our galaxy amidst the trillions of galaxies in the Universe, our Sun shines continuously, varying only slightly over time.

But without quantum physics, the Sun wouldn’t shine at all. Even in the extreme conditions found in the core of a massive star like our Sun, the nuclear reactions that power it could not occur without the bizarre properties that our quantum Universe demands. Thankfully, our Universe is quantum in nature, enabling the Sun and all the other stars to shine as they do. Here’s the science of how it works.

A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

The study shows that a spring-shaped magnetic field reduces the amount of plasma that slips out between the .

Known as the fourth state of matter, plasma is a gas so hot that electrons rip free of their atoms. Researchers use magnetic compression to study extreme plasma states in which the density is high enough for quantum mechanical effects to become important. Such states occur naturally inside stars and gas giant planets due to compression from gravity.

MIT engineers develop a hybrid process that connects photonics with “artificial atoms,” to produce the largest quantum chip of its type.

MIT researchers have developed a process to manufacture and integrate “artificial atoms,” created by atomic-scale defects in microscopically thin slices of diamond, with photonic circuitry, producing the largest quantum chip of its type.

The accomplishment “marks a turning point” in the field of scalable quantum processors, says Dirk Englund, an associate professor in MIT’s Department of Electrical Engineering and Computer Science. Millions of quantum processors will be needed to build quantum computers, and the new research demonstrates a viable way to scale up processor production, he and his colleagues note.

Evidence has emerged for long-proposed, but previously unconfirmed quasiparticles called anyons. The concept of anyons goes back 43 years, and physicists have found evidence collections of particles are behaving as anyons for some time, but have lacked confirmation. Now, within months of each other, two teams have found different methods to verify that this is what they are dealing with that look much more conclusive.

The universe’s particles are divided into two sorts; fermions and bosons. Fermions, including the components of atoms, cannot occupy the same quantum state as each other while bosons, which include photons of light, have no such problem.

Anyone who has spent much time around physicists will not be surprised to learn that many have wondered if there could be something else. For some, the so-called “particle zoo” is never sufficiently weird and wonderful. This led to the proposal of anyons, which can only exist in two-dimensional space.

Quantum radar can find it.


The hunt for the ever-elusive “Planet Nine” has taken scientists down some very strange roads. The idea that a planet exists in the outer reaches of our solar system and can’t be easily seen has been floating around for some time, and observations of other objects in the area suggest that there’s something big generating a gravitational pull. The easiest explanation would be a planet, but it’s not the only possibility.

Over the past few years, researchers have been trying to apply quantum physics theory to a variety of fields, including robotics, biology and cognitive science. Computational techniques that draw inspiration from quantum systems, also known as quantum-like (QL) models, could potentially achieve better performance and more sophisticated capabilities than more conventional approaches.

Researchers at University of Genoa, in Italy, have recently investigated the feasibility of using a QL approach to enhance a robot’s sensing capabilities. In their paper, pre-published on arXiv, they present the results of a case study where they tested a QL perception model on a robot with limited sensing capabilities within a simulated environment.

“The idea for this study came to me after reading an article written in 1993 by Anton Amann, (‘The Gestalt problem in quantum theory’) in which he compared the problem of Gestalt perception with the attribution of molecular shape in ,” Davide Lanza, one of the researchers who carried out the study, told TechXplore. “I was amazed by this parallel between cognition and quantum phenomena, and I discovered then the flourishing field of quantum cognition studies.”

July 13, 2020—Researchers at Columbia Engineering and Montana State University report today that they have found that placing sufficient strain in a 2-D material—tungsten diselenide (WSe2)—creates localized states that can yield single-photon emitters. Using sophisticated optical microscopy techniques developed at Columbia over the past three years, the team was able to directly image these states for the first time, revealing that even at room temperature they are highly tunable and act as quantum dots, tightly confined pieces of semiconductors that emit light.

“Our discovery is very exciting, because it means we can now position a emitter wherever we want, and tune its properties, such as the color of the emitted photon, simply by bending or straining the material at a specific location,” says James Schuck, associate professor of mechanical engineering, who co-led the study published today by Nature Nanotechnology. “Knowing just where and how to tune the single-photon is essential to creating quantum optical circuitry for use in quantum computers, or even in so-called ‘quantum’ simulators that mimic physical phenomena far too complex to model with today’s computers.”

Developing such as quantum computers and quantum sensors is a rapidly developing field of research as researchers figure out how to use the unique properties of quantum physics to create devices that can be much more efficient, faster, and more sensitive than existing technologies. For instance, quantum information—think encrypted messages—would be much more secure.