Menu

Blog

Archive for the ‘quantum physics’ category: Page 499

Oct 21, 2020

Does Consciousness Create Reality? Double Slit Experiment may show the Answer

Posted by in categories: neuroscience, particle physics, quantum physics

The double slit experiment — Does consciousness create reality? Quantum mechanics shows us that particles are in superposition, meaning they can exist in different states and even multiple places at the same time. They are nothing more than waves of probabilities, until the moment that they are measured. One interpretation of this phenomenon is that the measurement being made requires a measurer, or a conscious observer. If this is correct, then it implies that consciousness has to be is an integral part of creating the world that we observe. Could this consciousness then be required for creating reality? Does this mean that there would be no reality without consciousness?

Experiments can show that what we think of as particles behave like waves. Waves of probabilities. This is the foundation of Quantum mechanics. The famous double slit experiment illustrates this. What is bizarre is that when you try to find out what’s going on at the slits by placing a detector at the two slits to try to figure out which slit the individual atoms are going through – the “WHICH WAY” information, they all of a sudden stop behaving like waves, and behave like particles.

Continue reading “Does Consciousness Create Reality? Double Slit Experiment may show the Answer” »

Oct 21, 2020

An integrated circuit of pure magnons

Posted by in categories: computing, mobile phones, nanotechnology, quantum physics

Researchers led by Technische Universität Kaiserslautern (TUK) and the University of Vienna successfully constructed a basic building block of computer circuits using magnons to convey information, in place of electrons. The ‘magnonic half-adder’ described in Nature Electronics, requires just three nanowires, and far less energy than the latest computer chips.

A team of physicists are marking a milestone in the quest for smaller and more energy-efficient computing: they developed an integrated circuit using magnetic material and magnons to transmit binary data, the 1s and 0s that form the foundation of today’s computers and smartphones.

The new circuit is extremely tiny, with a streamlined, 2-D design that requires about 10 times less energy than the most advanced computer chips available today, which use CMOS technology. While the current magnon configuration is not as fast as CMOS, the successful demonstration can now be explored further for other applications, such as quantum or neuromorphic computing.

Oct 20, 2020

Quantum Tunnels Show How Particles Can Break the Speed of Light

Posted by in categories: particle physics, quantum physics

Recent experiments show that particles should be able to go faster than light when they quantum mechanically “tunnel” through walls.

Oct 20, 2020

Overview on quantum initiatives worldwide

Posted by in categories: innovation, quantum physics

Over the last years, there has been an exponential increase in investment in quantum technologies worldwide. The global effort for #publicfunding has been boosted. It is an amazing and exciting time of innovation in this new second quantum revolution. We have summarised the main programs and efforts around the world below. It is not a quantum race. It is a global ecosystem to develop new #quantum technology! It might be outdated by now, but it gives an idea 💡 and add to it the latest announced investments. However, this is not the real deal. Most are disguised under other initiatives such as the ones carried by the DOE in the US.


Over the last years there has been an exponential increase on investment in quantum technologies worldwide. The global effort for public funding has been boosted. It is an amazing and exciting time of innovation in this new second quantum revolution.

We have summarised the main programs and efforts around the world below. It is not a quantum race, it is a global ecosystem to develop the new quantum technology!

Continue reading “Overview on quantum initiatives worldwide” »

Oct 19, 2020

Perfect Energy Efficiency: Quantum Engines With Entanglement as Fuel?

Posted by in categories: energy, quantum physics, transportation

University of Rochester researcher receives $1 million grant to study quantum thermodynamics.

It’s still more science fiction than science fact, but perfect energy efficiency may be one step closer due to new research at the University of Rochester.

Continue reading “Perfect Energy Efficiency: Quantum Engines With Entanglement as Fuel?” »

Oct 18, 2020

Xi stresses advancing development of quantum science and technology

Posted by in categories: policy, quantum physics, science

President Xi Jinping, also general secretary of the Communist Party of China (CPC) Central Committee, has stressed the importance and urgency of advancing the development of quantum science and technology. Xi made the remarks while presiding over a group study session of the Political Bureau of the CPC Central Committee on Friday. Quantum mechanics is a fundamental theory which has been used successfully in explaining microscopic phenomena in all branches of physics. Experts believe the whole world is on the brink of a quantum revolution. Xi noted that China has made breakthroughs in some of the key areas, but still faces multiple challenges. He stressed the need to develop self-reliant technology in order to secure a stable supply chain. More support should be given to the industry in areas including development policy, talent recruiting, academic environment and so on, said Xi.

Oct 17, 2020

‘Classified knots’: Researchers create optical framed knots to encode information

Posted by in categories: encryption, quantum physics, security

In a world first, researchers from the University of Ottawa in collaboration with Israeli scientists have been able to create optical framed knots in the laboratory that could potentially be applied in modern technologies. Their work opens the door to new methods of distributing secret cryptographic keys—used to encrypt and decrypt data, ensure secure communication and protect private information. The group recently published their findings in Nature Communications.

“This is fundamentally important, in particular from a topology-focused perspective, since framed knots provide a platform for topological quantum computations,” explained senior author, Professor Ebrahim Karimi, Canada Research Chair in Structured Light at the University of Ottawa.

“In addition, we used these non-trivial optical structures as information carriers and developed a security protocol for classical communication where information is encoded within these framed knots.”

Oct 17, 2020

Research team discovers uniquely quantum effect in erasing information

Posted by in categories: computing, quantum physics

Researchers from Trinity have discovered a uniquely quantum effect in erasing information that may have significant implications for the design of quantum computing chips. Their surprising discovery brings back to life the paradoxical “Maxwell’s demon,” which has tormented physicists for over 150 years.

The thermodynamics of computation was brought to the fore in 1961 when Rolf Landauer, then at IBM, discovered a relationship between the dissipation of heat and logically irreversible operations. Landauer is known for the mantra “Information is Physical,” which reminds us that information is not abstract and is encoded on physical hardware.

The “bit” is the currency of information (it can be either zero or one) and Landauer discovered that when a bit is erased there is a minimum amount of heat released. This is known as Landauer’s bound and is the definitive link between information theory and thermodynamics.

Oct 16, 2020

We’ve built a fourth dimension of space and we’re about to look inside

Posted by in categories: particle physics, quantum physics

We only ever experience three spatial dimensions, but quantum lab experiments suggest a whole new side to reality – weird particle apparitions included.

Oct 15, 2020

Turning Diamond Into Metal – For Improved Solar Cells, LEDs, and Power Electronics

Posted by in categories: quantum physics, solar power, sustainability

Normally an insulator, diamond becomes a metallic conductor when subjected to large strain in a new theoretical model.

Long known as the hardest of all natural materials, diamonds are also exceptional thermal conductors and electrical insulators. Now, researchers have discovered a way to tweak tiny needles of diamond in a controlled way to transform their electronic properties, dialing them from insulating, through semiconducting, all the way to highly conductive, or metallic. This can be induced dynamically and reversed at will, with no degradation of the diamond material.

The research, though still at an early proof-of-concept stage, may open up a wide array of potential applications, including new kinds of broadband solar cells, highly efficient LEDs and power electronics, and new optical devices or quantum sensors, the researchers say.