Toggle light / dark theme

Quantum researchers at the University of Bristol have dramatically reduced the time to simulate an optical quantum computer, with a speedup of around one billion over previous approaches.

Quantum computers promise exponential speedups for certain problems, with potential applications in areas from drug discovery to new materials for batteries. But is still in its early stages, so these are long-term goals. Nevertheless, there are exciting intermediate milestones on the journey to building a useful device. One currently receiving a lot of attention is “”, where a quantum computer performs a task beyond the capabilities of even the world’s most powerful supercomputers.

Experimental work from the University of Science and Technology of China (USTC) was the first to claim quantum advantage using photons—particles of light, in a protocol called “Gaussian Boson Sampling” (GBS). Their paper claimed that the experiment, performed in 200 seconds, would take 600 million years to simulate on the world’s largest supercomputer.

‘’The Weak Gravity Conjecture holds that in a theory of quantum gravity, any gauge force must mediate interactions stronger than gravity for some particles. This statement has surprisingly deep and extensive connections to many different areas of physics and mathematics. Several variations on the basic conjecture have been proposed, including statements that are much stronger but are nonetheless satisfied by all known consistent quantum gravity theories. We review these relat… See more.


The Weak Gravity Conjecture holds that in a theory of quantum gravity, any.

Gauge force must mediate interactions stronger than gravity for some particles.

This statement has surprisingly deep and extensive connections to many.

The team was able to maintain this state of superposition among hundreds of vibrating pairs of fermions. In so doing, they achieved a new “quantum register,” or system of qubits, that appears to be robust over relatively long periods of time. The discovery, published today in the journal Nature, demonstrates that such wobbly qubits could be a promising foundation for future quantum computers.

New qubits stay in “superposition” for up to 10 seconds, and could make a promising foundation for quantum computers.

Caption: quibits graphic.
Credits: Credit: Sampson Wilcox/RLE

MIT physicists have discovered a new quantum bit, or “qubit,” in the form of vibrating pairs of atoms known as fermions. They found that when pairs of fermions are chilled and trapped in an optical lattice, the particles can exist simultaneously in two states — a weird quantum phenomenon known as superposition. In this case, the atoms held a superposition of two vibrational states, in which the pair wobbled against each other while also swinging in sync, at the same time.

It could hardly be more complicated: tiny particles whir around wildly with extremely high energy, countless interactions occur in the tangled mess of quantum particles, and this results in a state of matter known as “quark-gluon plasma”. Immediately after the Big Bang, the entire universe was in this state; today it is produced by high-energy atomic nucleus collisions, for example at CERN.

Such processes can only be studied using high-performance computers and highly complex computer simulations whose results are difficult to evaluate. Therefore, using artificial intelligence or machine learning for this purpose seems like an obvious idea. Ordinary machine-learning algorithms, however, are not suitable for this task. The mathematical properties of particle physics require a very special structure of neural networks. At TU Wien (Vienna), it has now been shown how neural networks can be successfully used for these challenging tasks in particle physics.

“Entanglement forging essentially enables you to cut up a larger circuit into smaller circuits that we can execute on smaller hardware,” IBM Quantum platform lead Blake Johnson said in a statement.

“Smaller circuits aren’t just easier to execute. They’re also able to tolerate a lot more noise just by virtue of being smaller.”

Meanwhile, progress continues on enlarging quantum systems. IBM’s 27-qubit Falcon processor dates from 2019, and has since been surpassed by larger systems, including IBM’s own 127-qubit Eagle last year. As detailed at the time, IBM intends to use that design to scale to a 433-qubit processor called Osprey this year, and a 1,121-qubit processed called Condor in 2023.

Yakir Aharonov and David Bohm proposed the effect that now bears their name in 1959, arguing that while classical potentials have no physical reality apart from the fields they represent, the same is not true in the quantum world. To make their case, the pair proposed a thought experiment in which an electron beam in a superposition of two wave packets is exposed to a time-varying electrical potential (but no field) when passing through a pair of metal tubes. They argued that the potential would introduce a phase difference between the wave packets and therefore lead to a measurable physical effect – a set of interference fringes – when the wave packets are recombined.

Seeking a gravitational counterpart

In the latest research, Mark Kasevich and colleagues at Stanford University show that the same effect also holds true for gravity. The platform for their experiment is an atom interferometer, which uses a series of laser pulses to split, guide and recombine atomic wave packets. The interference from these wave packets then reveals any change in the relative phase experienced along the two arms.

By using quantum key distribution (QKD), quantum cryptographers can share information via theoretic secure keys between remote peers through physics-based protocols. The laws of quantum physics dictate that photons carrying signals cannot be amplified or relayed through classical optical methods to maintain quantum security. The resulting transmission loss of the channel can limit its achievable distance to form a huge barrier to build large-scale quantum secure networks. In a new report now published in Nature Photonics, Shuang Wang and a research team in quantum information, cryptology and quantum physics in China developed an experimental QKD system to tolerate a channel loss beyond 140 dB across a secure distance of 833.8 km to set a new record for fiber-based quantum key distribution. Using the optimized four-phase twin-field protocol and high quality setup, they achieved secure key rates that were more than two orders of magnitude greater than previous records across similar distances. The results form a breakthrough to build reliable and terrestrial quantum networks across a scale of 1,000 km.

Quantum cryptography and twin-field quantum key distribution (QKD)

Quantum key distribution is based on fundamental laws of physics to distribute secret bits for information-theoretic secure communication, regardless of the unlimited computational power of a potential eavesdropper. The process has attracted widespread attention in the past three decades relative to the development of a global quantum internet, and matured to real-world deployment through optical-fiber networks. Despite this, wider applications of QKD are limited due to channel loss, limiting increase in the key rate and range of QKD. For example, photons are carriers of quantum keys in a QKD setup, and they can be prepared at the single-photon level to be scattered and absorbed by the transmission channel. The photons, however, cannot be amplified, and therefore the receiver can only detect them with very low probability. When transmitted via a direct fiber-based link from the transmitter to the receiver, the key rate can therefore decrease with transmission distance.

Rebooting a quantum computer is a tricky process that can damage its parts, but now two RIKEN physicists have proposed a fast and controllable way to hit reset.

Conventional computers process information stored as bits that take a value of zero or one. The potential power of quantum computers lies in their ability to process ‘qubits’ that can take a value of zero or one—or be some fuzzy mix of both simultaneously.

“However, to reuse the same circuit for multiple operations, you have to force the qubits back to zero fast,” says Jaw Shen Tsai, a quantum physicist at the RIKEN Center for Quantum Computing. But that is easier said than done.