Menu

Blog

Archive for the ‘quantum physics’ category: Page 485

Oct 25, 2020

Extreme events in quantum cascade lasers

Posted by in categories: biological, climatology, computing, neuroscience, quantum physics

Extreme events occur in many observable contexts. Nature is a prolific source: rogue water waves surging high above the swell, monsoon rains, wildfire, etc. From climate science to optics, physicists have classified the characteristics of extreme events, extending the notion to their respective domains of expertise. For instance, extreme events can take place in telecommunication data streams. In fiber-optic communications where a vast number of spatio-temporal fluctuations can occur in transoceanic systems, a sudden surge is an extreme event that must be suppressed, as it can potentially alter components associated with the physical layer or disrupt the transmission of private messages.

Recently, extreme events have been observed in quantum cascade lasers, as reported by researchers from Télécom Paris (France) in collaboration with UC Los Angeles (USA) and TU Darmstad (Germany). The giant pulses that characterize these extreme events can contribute the sudden, sharp bursts necessary for communication in neuromorphic systems inspired by the brain’s powerful computational abilities. Based on a quantum cascade laser (QCL) emitting mid-infrared light, the researchers developed a basic optical neuron system operating 10,000× faster than biological neurons. Their report is published in Advanced Photonics.

Oct 24, 2020

Quantum Experiment Sees Two Versions Of Reality Existing At The Same Time

Posted by in category: quantum physics

We know that our understanding of reality is pretty biased. Our senses, our cultures, and our knowledge shape how we see the world. And if you think that science will always give you objective reality, you might want to reconsider.

Physicists have finally been able to test a thought experiment first proposed in 1961 by Nobel Prize winner Eugen Wigner. The experiment is known as “Wigner’s Friend” and the setup is not too complicated. You start with a quantum system that has two states in superposition, which means that until you measure it, both states exist at the same time. For this example, a photon’s polarisation (the axis it spins on) is both horizontal and vertical.

Wigner’s friend is in the lab performing the experiment and once they measure it, the system will collapse and the photon will be fixed into one of those two states. But for Wigner, who is outside the lab unaware of the result of the measurement, the quantum system (which, importantly, also includes the lab) is still in superposition. Despite contradictory results, they are both correct. (This is similar to Schrödinger’s cat, a thought experiment also about superposition, if Schrödinger and his cat-in-a-box were also in a box.) So, two objective realities, Wigner’s and Wigner’s friend’s, appear to coexist. And this is a problem.

Oct 24, 2020

New Time Dilation Phenomenon Revealed: Timekeeping Theory Combines Quantum Clocks and Einstein’s Relativity

Posted by in categories: particle physics, quantum physics

“Whenever we have developed better clocks, we’ve learned something new about the world,” said Alexander Smith, an assistant professor of physics at Saint Anselm College and adjunct assistant professor at Dartmouth College, who led the research as a junior fellow in Dartmouth’s Society of Fellows. “Quantum time dilation is a consequence of both quantum mechanics and Einstein’s relativity, and thus offers a new possibility to test fundamental physics at their intersection.”


A phenomenon of quantum mechanics known as superposition can impact timekeeping in high-precision clocks, according to a theoretical study from Dartmouth College, Saint Anselm College and Santa Clara University.

Research describing the effect shows that superposition — the ability of an atom to exist in more than one state at the same time — leads to a correction in atomic clocks known as “quantum time dilation.”

Continue reading “New Time Dilation Phenomenon Revealed: Timekeeping Theory Combines Quantum Clocks and Einstein’s Relativity” »

Oct 24, 2020

Quantum Time Twist Offers a Way to Create Schrödinger’s Clock

Posted by in category: quantum physics

Albert Einstein’s twin paradox is one of the most famous thought experiments in physics. It postulates that if you send one of two twins on a return trip to a star at near light speed, they will be younger than their identical sibling when they return home. The age difference is a consequence of something called time dilation, which is described by Einstein’s special theory of relativity: the faster you travel, the slower time appears to pass.

But what if we introduce quantum theory into the problem? Physicists Alexander Smith of Saint Anselm College and Dartmouth College and Mehdi Ahmadi of Santa Clara University tackle this idea in a study published today in the journal Nature Communications. The scientists imagine measuring a quantum atomic clock experiencing two different times while it is placed in superposition—a quirk of quantum mechanics in which something appears to exist in two places at once. “We know from Einstein’s special theory of relativity that when a clock moves relative to another clock, the time shown on it slows down,” Smith says. “But quantum mechanics allows you to start thinking about what happens if this clock were to move in a superposition of two different speeds.”


Physicists describe a way to merge quantum theory with Einstein’s special theory of relativity—and even a method to test it experimentally.

Continue reading “Quantum Time Twist Offers a Way to Create Schrödinger’s Clock” »

Oct 23, 2020

Scientists Discover New Way to Get Quantum Computing to Work at Room Temperature

Posted by in categories: computing, quantum physics

With room temperature superconductors now we can have room temperature quantum computers.


Yet another hurdle to sustain quantum computing has been crossed.

Continue reading “Scientists Discover New Way to Get Quantum Computing to Work at Room Temperature” »

Oct 21, 2020

Measuring Progress in the ‘Noisy’ Era of Quantum Computing

Posted by in categories: computing, quantum physics

IBM’s concept of quantum volume tries to measure quantum computing progress in ways beyond counting qubits.

Oct 21, 2020

Does Consciousness Create Reality? Double Slit Experiment may show the Answer

Posted by in categories: neuroscience, particle physics, quantum physics

The double slit experiment — Does consciousness create reality? Quantum mechanics shows us that particles are in superposition, meaning they can exist in different states and even multiple places at the same time. They are nothing more than waves of probabilities, until the moment that they are measured. One interpretation of this phenomenon is that the measurement being made requires a measurer, or a conscious observer. If this is correct, then it implies that consciousness has to be is an integral part of creating the world that we observe. Could this consciousness then be required for creating reality? Does this mean that there would be no reality without consciousness?

Experiments can show that what we think of as particles behave like waves. Waves of probabilities. This is the foundation of Quantum mechanics. The famous double slit experiment illustrates this. What is bizarre is that when you try to find out what’s going on at the slits by placing a detector at the two slits to try to figure out which slit the individual atoms are going through – the “WHICH WAY” information, they all of a sudden stop behaving like waves, and behave like particles.

Continue reading “Does Consciousness Create Reality? Double Slit Experiment may show the Answer” »

Oct 21, 2020

An integrated circuit of pure magnons

Posted by in categories: computing, mobile phones, nanotechnology, quantum physics

Researchers led by Technische Universität Kaiserslautern (TUK) and the University of Vienna successfully constructed a basic building block of computer circuits using magnons to convey information, in place of electrons. The ‘magnonic half-adder’ described in Nature Electronics, requires just three nanowires, and far less energy than the latest computer chips.

A team of physicists are marking a milestone in the quest for smaller and more energy-efficient computing: they developed an integrated circuit using magnetic material and magnons to transmit binary data, the 1s and 0s that form the foundation of today’s computers and smartphones.

The new circuit is extremely tiny, with a streamlined, 2-D design that requires about 10 times less energy than the most advanced computer chips available today, which use CMOS technology. While the current magnon configuration is not as fast as CMOS, the successful demonstration can now be explored further for other applications, such as quantum or neuromorphic computing.

Oct 20, 2020

Quantum Tunnels Show How Particles Can Break the Speed of Light

Posted by in categories: particle physics, quantum physics

Recent experiments show that particles should be able to go faster than light when they quantum mechanically “tunnel” through walls.

Oct 20, 2020

Overview on quantum initiatives worldwide

Posted by in categories: innovation, quantum physics

Over the last years, there has been an exponential increase in investment in quantum technologies worldwide. The global effort for #publicfunding has been boosted. It is an amazing and exciting time of innovation in this new second quantum revolution. We have summarised the main programs and efforts around the world below. It is not a quantum race. It is a global ecosystem to develop new #quantum technology! It might be outdated by now, but it gives an idea 💡 and add to it the latest announced investments. However, this is not the real deal. Most are disguised under other initiatives such as the ones carried by the DOE in the US.


Over the last years there has been an exponential increase on investment in quantum technologies worldwide. The global effort for public funding has been boosted. It is an amazing and exciting time of innovation in this new second quantum revolution.

We have summarised the main programs and efforts around the world below. It is not a quantum race, it is a global ecosystem to develop the new quantum technology!

Continue reading “Overview on quantum initiatives worldwide” »