Toggle light / dark theme

Quantum Networks Transformed: Nanometric Optomechanical Cavities Unlock New Realms

A groundbreaking study introduces advanced nanometric optomechanical cavities, paving the way for more efficient quantum networks and improving quantum computing and communication technologies.

The ability to transmit information coherently in the band of the electromagnetic spectrum from microwave to infrared is vitally important to the development of the advanced quantum networks used in computing and communications.

A study conducted by researchers at the State University of Campinas (UNICAMP) in Brazil, in collaboration with colleagues at ETH Zurich in Switzerland and TU Delft in the Netherlands, focused on the use of nanometric optomechanical cavities for this purpose. These nanoscale resonators promote interaction between high-frequency mechanical vibrations and infrared light at wavelengths used by the telecommunications industry.

Huge First: Physicists ‘Entangle’ Individual Molecules With Staggering Precision

Bulky and hard to wrangle, molecules have long defied physicists’ attempts to lure them into a state of controlled quantum entanglement, whereby the molecules are intimately linked even at a distance.

Now, for the first time, two separate teams have succeeded in entangling pairs of ultra-cold molecules using the same method: microscopically precise optical ‘tweezer traps’

Quantum entanglement is a bizarre yet fundamental phenomenon of the quantum realm that physicists are trying to tap into to create the first, commercial quantum computers.

Physicists Hope to Finally Resolve Whether Gravity is Quantum by Levitating Micro Diamonds

If successful, the experiments would not only affirm some of the theories proposing the quantum nature of gravity but could also finally unify general relativity with theories of quantum mechanics.

Unifying General Relativity with Quantum Mechanics Has Proven Elusive

“General relativity and quantum mechanics are the two most fundamental descriptions of nature we have,” explains the press release announcing the new experiments. “General relativity explains gravity on large scales while quantum mechanics explains the behaviour of atoms and molecules.”

Artificial Intelligence, Quantum Computing, and Space are 3 Tech areas to Watch in 2024

By Chuck Brooks


Every new year creates a new opportunity for optimism and predictions. In the past couple of years, emerging technology has permeated almost all areas of our lives. There is much to explore! In this article, I focus on three evolving technology areas that are already impacting our future but are only at the early stages of true potential: artificial intelligence, quantum computing, and space systems.

In addition to my own thoughts and perspectives, I reached out to several well-known subject matter experts on those very topic areas to share their valued insights.

Artificial Intelligence is on the Cusp of Transforming Civilization

Artificial intelligence (AI) is a highly intriguing and hotly contested subset of emerging technology. Science fiction no longer exists in the realm of AI. Businesses are currently working on technologies that will enable artificial intelligence software to be installed on millions of computers worldwide.

SCALE YOUR QUBITS

How do we go from 100 to 200 to 1000? PASQAL, a quantum computing startup, is using LASERS. They’ve demonstrated 100 and 200 qubit systems, now they’re talking about making 1000. Here’s the mockup of their system.

———————-
Need POTATO merch? There’s a chip for that!
http://merch.techtechpotato.com.

http://more-moore.com : Sign up to the More Than Moore Newsletter.
https://www.patreon.com/TechTechPotato : Patreon gets you access to the TTP Discord server!

Follow Ian on Twitter at http://twitter.com/IanCutress.
Follow TechTechPotato on Twitter at http://twitter.com/TechTechPotato.

If you’re in the market for something from Amazon, please use the following links. TTP may receive a commission if you purchase anything through these links.
Amazon USA : https://geni.us/AmazonUS-TTP
Amazon UK : https://geni.us/AmazonUK-TTP
Amazon CAN : https://geni.us/AmazonCAN-TTP
Amazon GER : https://geni.us/AmazonDE-TTP
Amazon Other : https://geni.us/TTPAmazonOther.

Ending music: https://www.youtube.com/watch?v=2N0tmgau5E4
———————-
Welcome to the TechTechPotato © Dr. Ian Cutress.
Ramblings about things related to Technology from an analyst for More Than Moore.

Moving entangled atoms in quantum processor

Building a plane while flying it isn’t typically a goal for most, but for a team of Harvard-led physicists that general idea might be a key to finally building large-scale quantum computers.

Described in a new paper in Nature, the research team, which includes collaborators from QuEra Computing, MIT, and the University of Innsbruck, developed a new approach for processing quantum information that allows them to dynamically change the layout of atoms in their system by moving and connecting them with each other in the midst of computation.

This ability to shuffle the qubits (the fundamental building blocks of quantum computers and the source of their massive processing power) during the computation process while preserving their quantum state dramatically expands processing capabilities and allows for self-correction of errors. Clearing this hurdle marks a major step toward building large-scale machines that leverage the bizarre characteristics of quantum mechanics and promise to bring about real-world breakthroughs in material science, communication technologies, finance, and many other fields.

/* */