Menu

Blog

Archive for the ‘quantum physics’ category: Page 449

Sep 22, 2020

The Secret Of Quantum Physics: Let There Be Life (Jim Al-Khalili) | Science Documentary | Science

Posted by in categories: biotech/medical, education, evolution, quantum physics, science

https://www.youtube.com/watch?v=CtXlpPENeP0&feature=share

Physicist Jim Al-Khalili routinely deals with the strangest subject in all of science — quantum physics, the astonishing and perplexing theory of sub-atomic particles. But now he’s turning his attention to the world of nature. Can quantum mechanics explain the greatest mysteries in biology?

His first encounter is with the robin. This familiar little bird turns out to navigate using one of the most bizarre effects in physics — quantum entanglement, a process which seems to defy common sense. Even Albert Einstein himself could not believe it.

Continue reading “The Secret Of Quantum Physics: Let There Be Life (Jim Al-Khalili) | Science Documentary | Science” »

Sep 21, 2020

The Universal Mind Revealed as a Multi-Layered Quantum Neural Network

Posted by in categories: mathematics, particle physics, quantum physics, robotics/AI

In the sixties of the previous century, the science of Cybernetics emerged, which its founder Norbert Wiener defined as “the scientific study of control and communication in the animal and the machine.” Whereas the cyberneticists perhaps saw everything in the organic world too much as a machine type of regulatory network, the paradigm swapped to its mirror image, wherein everything in the natural world became seen as an organic neural network. Indeed, self-regulating networks appear to be ubiquitous: From the subatomic organization of atoms to the atomic organization of molecules, macromolecules, cells and organisms, everywhere the equivalent of neural networks appears to be present.

#EvolutionaryCybernetics #CyberneticTheoryofMind #PhilosophyofMind #QuantumTheory #cybernetics #evolution #consciousness

Continue reading “The Universal Mind Revealed as a Multi-Layered Quantum Neural Network” »

Sep 21, 2020

A Quantum Molecular Assembler

Posted by in categories: chemistry, computing, particle physics, quantum physics

Researchers have created a molecule in a single, precisely characterized quantum state by merging two carefully prepared atoms.

Researchers have demonstrated a quantum molecular assembler—a device that takes individual atoms as inputs and merges them into a molecule in a desired quantum state. The team used lasers to trap and cool one sodium (Na) atom and one cesium (Cs) atom, bring them together, and merge them into an NaCs molecule in a specific quantum state. Such a quantum-controlled molecule is a promising building block for quantum computers and could help researchers study the quantum details of chemical reactions.

Sep 20, 2020

Quantum Enhanced Atomic Force Microscopy: Squeezed Light Reduces Noise

Posted by in categories: computing, engineering, quantum physics

Researchers at the Department of Energy’s Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

“We showed how to use squeezed light – a workhorse of quantum information science – as a practical resource for microscopy,” said Ben Lawrie of ORNL’s Materials Science and Technology Division, who led the research with Raphael Pooser of ORNL’s Computational Sciences and Engineering Division. “We measured the displacement of an atomic force microscope microcantilever with sensitivity better than the standard quantum limit.”

Unlike today’s classical microscopes, Pooser and Lawrie’s quantum microscope requires quantum theory to describe its sensitivity. The nonlinear amplifiers in ORNL’s microscope generate a special quantum light source known as squeezed light.

Sep 19, 2020

Anti-Time: A Twin of Time?

Posted by in categories: computing, cosmology, quantum physics, singularity

A new D-Theory of Time, or Digital Presentism, is predicated on reversible quantum computing at large, including the notion of ‘Anti-Time’ around which the present article revolves. If you think Anti-Time is nothing but fiction, and doesn’t apply to our reality, think again. As Dr. Antonin Tuynman writes in his Foreword to The Physics of Time: D-Theory of Time & Temporal Mechanics by Alex M. Vikoulov: “Whereas quantum physics and relativity theory have been solidly in place for over a century now, stubbornly and forcedly we still cling to atavistic interpretations, which are no longer in line with the well-established findings of our experiments in physics. Amidst the turmoil of this spinning convoluted dreamtime of our digital Cyberbardo, Vikoulov carves out a trajectory for understanding.”

#AntiTime #PhysicsofTime #DTheoryofTime #DigitalPresentism #TemporalMechanics


Many temporal concepts are undoubtedly extremely counterintuitive. Time directionality and time symmetry are especially notorious ones. Any of the possible pasts may have led to the present “digital” conscious instant. This is a strange idea if you are accustomed to looking at the world in a strictly linear, deterministic way, but it reflects the uncertain world described by quantum mechanics. A major counterargument to the multitude of pasts could be a combinatorial explosion of observer ‘anti-time’-lines, i.e., digital timelines extending in the opposite temporal direction from the present temporal singularity to the Alpha Point (Digital Big Bang). So, how in the quantum multiverse are those digital anti-timelines supposed to converge once again at the Alpha Point?

Continue reading “Anti-Time: A Twin of Time?” »

Sep 19, 2020

What it’s like to actually use Honeywell’s new quantum computer

Posted by in categories: computing, quantum physics

An exclusive look into programming on Honeywell’s new quantum computers.

Sep 18, 2020

IBM and Cambridge Quantum Computing announce random number generator service

Posted by in categories: computing, quantum physics

This cloud-based quantum computing service includes verification and is now available to members of the IBM Q Network.

IBM and Cambridge Quantum Computing have built a random number generator that uses quantum computing with verification and plan to offer the new capability as a cloud service.

IBM and CQC announced the news Thursday at the final day of the IBM Q Summit. CQC developed the application, which generates true maximal randomness, or entropy.

Sep 18, 2020

Revolutionary Quantum Cryptography Breakthrough Paves Way for Safer Online Communication

Posted by in categories: biotech/medical, cybercrime/malcode, encryption, internet, quantum physics

The world is one step closer to having a totally secure internet and an answer to the growing threat of cyber-attacks, thanks to a team of international scientists who have created a unique prototype that could transform how we communicate online.

The invention led by the University of Bristol, revealed today in the journal Science Advances, has the potential to serve millions of users, is understood to be the largest-ever quantum network of its kind, and could be used to secure people’s online communication, particularly in these internet-led times accelerated by the COVID-19 pandemic.

Sep 18, 2020

Floating oil droplet contains hundreds of degenerate optical modes

Posted by in categories: computing, quantum physics

“Hyperdegeneracy” could be used in quantum computing.


Microscopic oil droplets held aloft with optical tweezers can contain more than 200 resonant optical modes of similar energies, creating “hyperdegeneracy” for the first time. That is the claim of researchers in Israel, Spain and the US, who say that their breakthrough could ultimately find application in high-speed optical communications, sensing, quantum data processing and even the creation of dynamic optical circuits.

When optical materials with a high refractive index are formed into certain symmetrical shapes — such as rings, cylinders or spheres —light can be repeatedly reflected around the inside of the material, much in the same way that sound waves pass around the inside edge of St Paul’s Cathedral’s famous “whispering gallery”. The circulating light undergoes constructive interference, forming discrete resonant modes – or so-called degenerate states – with similar energies.

Continue reading “Floating oil droplet contains hundreds of degenerate optical modes” »

Sep 18, 2020

The observation of Bloch ferromagnetism in composite fermions

Posted by in categories: particle physics, quantum physics

Composite fermions are exotic quasi-particles found in interacting 2-D fermion systems at relatively large perpendicular magnetic fields. These quasi-particles, which are composed of an electron and two magnetic flux quanta, have often been used to describe a physical phenomenon known as the fractional quantum Hall effect.

Researchers at Princeton University and Pennsylvania State University recently used composite to test a theory introduced by physicist Felix Bloch almost a century ago, suggesting that at very low densities, a paramagnetic Fermi “sea” of electrons should spontaneously transition to a fully magnetized state, which is now referred to as Bloch ferromagnetism. Their paper, published in Nature Physics, provides evidence of an abrupt transition to full magnetization that is closely aligned with the state theorized by Bloch.

“Composite fermions are truly remarkable,” Mansour Shayegan, professor of Electrical Engineering at Princeton University and one of the researchers who carried out the study, told Phys.org. “They are born of interaction and magnetic flux, and yet they map such a complex system to a simple collection of quasi-particles that to a large degree behave as non-interacting and also behave as if they don’t feel the large magnetic field. One of their most interesting properties is their spin polarization.”