Toggle light / dark theme

String Theory, Quantum Gravity and Black Holes (Or, Are We Holograms?)

Join Brian Greene and Juan Maldacena as they explore a wealth of developments connecting black holes, string theory, quantum gravity, quantum entanglement, wormholes, and the holographic principle.

This program is part of the Big Ideas Series, made possible with support from the John Templeton Foundation.

WSF Landing Page Link: https://www.worldsciencefestival.com/programs/string-theory-…holograms/

SHARE YOUR THOUGHTS on this program through a short survey:
https://survey.alchemer.com/s3/7587523/Live-Chat-with-Juan-Maldacena.

- SUBSCRIBE to our YouTube Channel and “ring the bell” for all the latest videos from WSF
- VISIT our Website: http://www.worldsciencefestival.com.
- LIKE us on Facebook: https://www.facebook.com/worldsciencefestival.
- FOLLOW us on Twitter: https://twitter.com/WorldSciFest.
#briangreene #wormholes #stringtheory

Research reveals rare metal could offer revolutionary switch for future quantum devices

Quantum scientists have discovered a rare phenomenon that could hold the key to creating a ‘perfect switch’ in quantum devices which flips between being an insulator and a superconductor.

The research, led by the University of Bristol and published in Science, found these two opposing electronic states exist within purple bronze, a unique one-dimensional metal composed of individual conducting chains of atoms.

Tiny changes in the material, for instance, prompted by a small stimulus like heat or light, may trigger an instant transition from an insulating state with zero conductivity to a superconductor with unlimited conductivity, and vice versa. This polarized versatility, known as “emergent symmetry,” has the potential to offer an ideal On/Off switch in future quantum technology developments.

7 A-Rated Quantum Computing Stocks to Buy in November

Investors are always looking for the next great breakthrough in technology. As computers are indispensable tools for managing everything from finance to healthcare and smart cities, it only makes sense to look at the next stage of development and A-rated quantum computing stocks.

Quantum computing is still in its early stages, but companies are already making inroads. Zapata surveyed executives at 300 companies with revenues of $250 million and computing budgets over $1 million. Of those, over two-thirds spent more than $1 million annually to develop quantum computing applications.

Quantum computer stocks represent companies trying to revolutionize cryptography, optimization, drug discovery and artificial intelligence. It holds promise for solving complex problems currently infeasible for classical computers due to their exponential time requirements.

Research demonstrates new type of ferromagnetism with completely different alignment of magnetic moments

For a magnet to stick to a fridge door, several physical effects inside of it need to work together perfectly. The magnetic moments of its electrons all point in the same direction, even if no external magnetic field forces them to do so.

This happens because of the so-called exchange interaction, a combination of electrostatic repulsion between electrons and quantum mechanical effects of the electron spins, which, in turn, are responsible for the . This is a common explanation for the fact that certain materials like iron or nickel are ferromagnetic or permanently magnetic, as long as one does not heat them above a particular temperature.

At ETH in Zurich, a team of researchers led by Ataç Imamoğlu at the Institute for Quantum Electronics and Eugene Demler at the Institute for Theoretical Physics have now detected a new type of ferromagnetism in an artificially produced material, in which the alignment of the magnetic moments comes about in a completely different way. They recently published their results in the journal Nature.

Three-pronged approach discerns qualities of quantum spin liquids

In 1973, physicist Phil Anderson hypothesized that the quantum spin liquid, or QSL, state existed on some triangular lattices, but he lacked the tools to delve deeper. Fifty years later, a team led by researchers associated with the Quantum Science Center headquartered at the Department of Energy’s Oak Ridge National Laboratory has confirmed the presence of QSL behavior in a new material with this structure, KYbSe2.

QSLs—an unusual state of matter controlled by interactions among entangled, or intrinsically linked, magnetic atoms called spins—excel at stabilizing quantum mechanical activity in KYbSe2 and other delafossites. These materials are prized for their layered triangular lattices and promising properties that could contribute to the construction of high-quality superconductors and quantum computing components.

The paper, published in Nature Physics, features researchers from ORNL; Lawrence Berkeley National Laboratory; Los Alamos National Laboratory; SLAC National Accelerator Laboratory; the University of Tennessee, Knoxville; the University of Missouri; the University of Minnesota; Stanford University; and the Rosario Physics Institute.

Scientists set the stage for quantum chemistry in space on NASA’s cold atom lab

For the first time in space, scientists have produced a mixture of two quantum gases made of two types of atoms. Accomplished with NASA’s Cold Atom Laboratory aboard the International Space Station, the achievement marks another step toward bringing quantum technologies currently available only on Earth into space.

Physicists at Leibniz University Hannover (LUH), part of a collaboration led by Prof. Nicholas Bigelow, University of Rochester, provided the theoretical calculations necessary for this achievement. While quantum tools are already used in everything from cell phones to GPS to , in the future, quantum tools could be used to enhance the study of planets, including our own, as well as to help solve mysteries of the universe and deepen our understanding of the fundamental laws of nature.

The new work, performed remotely by scientists on Earth, is described in Nature.

The origins of the black hole information paradox

While physics tells us that information can neither be created nor destroyed (if information could be created or destroyed, then the entire raison d’etre of physics, that is to predict future events or identify the causes of existing situations, would be impossible), it does not demand that the information be accessible. For decades physicists assumed that the information that fell into a black hole is still there, still existing, just locked away from view.

This was fine, until the 1970s when Stephen Hawking discovered the secret complexities of the event horizon. It turns out that these dark beasts were not as simple as we had been led to believe, and that the event horizons of are one of the few places in the entire cosmos where meets quantum mechanics in a manifest way.

The quest to unify quantum mechanics and gravity stretches back over a century, soon after the development of those two great domains of physics. What prevented their unification was a proliferation of infinities in the mathematics. Anytime gravity became strong at small scales, our equations diverged to infinity and gave useless non-results. But here we are at the boundaries of black holes, which by definition are places of strong gravity. And because the event horizons are mathematical constructs, not actual surfaces with finite extent, to truly understand them we must examine them microscopically, which plants them firmly in the realm of the quantum.

Novel Modes of Neural Computation: From Nanowires to Mind

The human mind is by far one of the most amazing natural phenomena known to man. It embodies our perception of reality, and is in that respect the ultimate observer. The past century produced monumental discoveries regarding the nature of nerve cells, the anatomical connections between nerve cells, the electrophysiological properties of nerve cells, and the molecular biology of nervous tissue. What remains to be uncovered is that essential something – the fundamental dynamic mechanism by which all these well understood biophysical elements combine to form a mental state. In this chapter, we further develop the concept of an intraneuronal matrix as the basis for autonomous, self–organized neural computing, bearing in mind that at this stage such models are speculative. The intraneuronal matrix – composed of microtubules, actin filaments, and cross–linking, adaptor, and scaffolding proteins – is envisioned to be an intraneuronal computational network, which operates in conjunction with traditional neural membrane computational mechanisms to provide vastly enhanced computational power to individual neurons as well as to larger neural networks. Both classical and quantum mechanical physical principles may contribute to the ability of these matrices of cytoskeletal proteins to perform computations that regulate synaptic efficacy and neural response. A scientifically plausible route for controlling synaptic efficacy is through the regulation of neural transport of synaptic proteins and of mRNA. Operations within the matrix of cytoskeletal proteins that have applications to learning, memory, perception, and consciousness, and conceptual models implementing classical and quantum mechanical physics are discussed. Nanoneuroscience methods are emerging that are capable of testing aspects of these conceptual models, both theoretically and experimentally. Incorporating intra–neuronal biophysical operations into existing theoretical frameworks of single neuron and neural network function stands to enhance existing models of neurocognition.

/* */