Toggle light / dark theme

Using existing experimental and computational resources, a multi-institutional team has developed an effective method for measuring high-dimensional qudits encoded in quantum frequency combs, which are a type of photon source, on a single optical chip.

Although the word “qudit” might look like a typo, this lesser-known cousin of the qubit, or , can carry more information and is more resistant to noise—both of which are key qualities needed to improve the performance of quantum networks, quantum key distribution systems and, eventually, the quantum internet.

Classical computer bits categorize data as ones or zeroes, whereas qubits can hold values of one, zero or both—simultaneously—owing to superposition, which is a phenomenon that allows multiple quantum states to exist at the same time. The “d” in qudit stands for the number of different levels or values that can be encoded on a photon. Traditional qubits have two levels, but adding more levels transforms them into qudits.

The University of Alicante Quantum Chemistry group has predicted and published the existence of a new natural phenomenon in matter-radiation interaction, which has recently been experimentally confirmed. This finding is the subject of the review that the group’s researcher Juan Carlos Sancho García has submitted to the journal Nature, having been invited to publish in its “News & Views” section.

According to Sancho, his contribution is a successful example of how theory and simulation make it possible to advance and predict phenomena that are later confirmed by experiments, with the corresponding possible impact on the technological advances that populate society and the world today. In particular, the review reports the empirical confirmation of a prediction previously made and published by the UA team using quantum mechanics calculations. This is based on the effect of the “electronic correlation” that occurs strongly in this type of molecules studied, by which it is possible to take advantage of 100% of the energy that is emitted in the form of visible light on any screen.

The researcher explains that each of the pixels of a screen that makes up any device such as mobile phones, tablets, etc. is made up of molecules that emit the three basic colors (red, green, and blue). The battery activates these molecules to emit light () so that they first reach their maximum level of “excitation” and then decay, and it is this loss of energy that results in the emission of color.

Molecules could make useful systems for quantum computers, but they must contain individually addressable, interacting quantum bit centers. In the journal Angewandte Chemie, a team of researchers has now presented a molecular model with three different coupled qubit centers. As each center is spectroscopically addressable, quantum information processing (QIP) algorithms could be developed for this molecular multi-qubit system for the first time, the team says.

Computers compute using bits, while quantum computers use quantum bits (or qubits for short). While a conventional bit can only represent 0 or 1, a qubit can store two states at the same time. These superimposed states mean that a quantum computer can carry out parallel calculations, and if it uses a number of qubits, it has the potential to be much faster than a standard computer.

However, in order for the quantum computer to perform these calculations, it must be able to evaluate and manipulate the multi-qubit information. The research teams of Alice Bowen and Richard Winpenny, University of Manchester, UK, and their colleagues have now produced a molecular model system with several separate qubit units, which can be spectroscopically detected and the states of which can be switched by interacting with one another.

Long-Lived Coherent Quantum States in a Superconducting Device for Quantum Information Technology

Scientists have been able to demonstrate for the first time that large numbers of quantum bits, or qubits, can be tuned to interact with each other while maintaining coherence for an unprecedentedly long time, in a programmable, solid-state superconducting processor. This breakthrough was made by researchers from Arizona State University and Zhejiang University in China, along with two theorists from the United Kingdom.

Previously, this was only possible in Rydberg atom.

A series of buzzing, bee-like “loop-currents” could explain a recently discovered, never-before-seen phenomenon in a type of quantum material. The findings from researchers at the University of Colorado Boulder may one day help engineers to develop new kinds of devices, such as quantum sensors or the quantum equivalent of computer memory storage devices.

The quantum material in question is known by the chemical formula Mn3Si2Te6. But you could also call it “” because its manganese and tellurium atoms form a network of interlocking octahedra that look like the cells in a beehive.

Physicist Gang Cao and his colleagues at CU Boulder synthesized this molecular beehive in their lab in 2020, and they were in for a surprise: Under most circumstances, the material behaved a lot like an insulator. In other words, it didn’t allow electric currents to pass through it easily. When they exposed the honeycomb to magnetic fields in a certain way, however, it suddenly became millions of times less resistant to currents. It was almost as if the material had morphed from rubber into metal.

The key to maximizing traditional or quantum computing speeds lies in our ability to understand how electrons behave in solids, and a collaboration between the University of Michigan and the University of Regensburg captured electron movement in attoseconds—the fastest speed yet.

Seeing move in increments of one quintillionth of a second could help push processing speeds up to a billion times faster than what is currently possible. In addition, the research offers a “game-changing” tool for the study of many-body physics.

“Your current computer’s processor operates in gigahertz, that’s one billionth of a second per operation,” said Mackillo Kira, U-M professor of electrical engineering and , who led the theoretical aspects of the study published in Nature. “In , that’s extremely slow because electrons within a computer chip collide trillions of times a second and each collision terminates the quantum computing cycle.

A laser pulse that sidesteps the inherent symmetry of light waves could manipulate quantum information, potentially bringing us closer to room temperature quantum computing.

The study, led by researchers at the University of Regensburg and the University of Michigan, could also accelerate conventional computing.

Quantum computing has the potential to accelerate solutions to problems that need to explore many variables at the same time, including drug discovery, weather prediction and encryption for cybersecurity. Conventional computer bits encode either a 1 or 0, but quantum bits, or qubits, can encode both at the same time. This essentially enables quantum computers to work through multiple scenarios simultaneously, rather than exploring them one after the other. However, these mixed states don’t last long, so the must be faster than electronic circuits can muster.

Humanoid artificial intelligence is coming and there’s a good chance it may come to life in Vancouver.

That’s because some of the brains at work creating AI – human-like AI – live and work here. The odds that they will succeed are high, they have an amazing track record. One of those brains is the mastermind behind the development of quantum computing that has manifested itself into the company known as D-Wave.

At the core of the development on humanoid AI sits an existential question: what does it mean to be human? What motivates us, how do we decide right from wrong and whose morals constitute the foundation of the programming of the machine that will self-learn? These are just a few of the questions that surround what many believe will be the last great human discovery.

We invited Geordie Rose of Sanctuary AI to join us for a Conversation That Matters about artificial intelligence – why, what, when, where and how soon.

QNTYM Railway is a ‘software level’ application that can be deployed on current hardware meaning there will be no need for changes in physical network infrastructure (hardware). The QNTYM Railway is an inherently quantum secure, self-defending, resilient, digital infrastructure capable of lightning-fast speed with a significant sustainability proposition. From a command & control standpoint, the QNTYM Railway is also integrated with leading vendors where users can benefit from having threat intel, vulnerability, device & incident response management capabilities all automated and in one place, hence reducing complexity.

In terms of speed, the QNTYM Railway has demonstrated consistent throughput speeds of 350+ Mbit/s, (and above). The QNTYM Railway provides integration and interoperability that is in a class of its own allowing technology to reach new levels. For the past year, QDEx Labs has been stress-assessing the QNTYM Railway across three interconnected cloud environments (AWS, Google Cloud, and Azure); they found that not only are they consistently experiencing the minimum requirement of 250 Mbit/s for 8k video streaming, but they are also, in fact, recording data streams reaching 3 to 4 times that amount with little to no processor load and added latencies in the microsecond (NOT millisecond) range.

The bottom line is that this architecture has now proven capable of hosting an ultra-realistic 3D metaverse. Results like these are something that Web3 and Metaverse projects currently lack and will require.