Toggle light / dark theme

US researchers develop ‘unhackable’ computer chip that works on light

Researchers at the University of Pennsylvania have developed a new computer chip that uses light instead of electricity. This could improve the training of artificial intelligence (AI) models by improving the speed of data transfer and, more efficiently, reducing the amount of electricity consumed.

Humanity is building the exascale supercomputers today that can carry out a quintillion computations per second. While the scale of the computation may have increased, computing technology is still working on the principles that were first used in the 1960s.

Researchers have been working on developing computing systems based on quantum mechanics, too, but these computers are at least a few years from becoming widely available if not more. The recent explosion of AI models in technology has resulted in a demand for computers that can process large sets of information. The inefficient computing systems, though, result in high consumption of energy.

Scientists Create World’s First “Quantum Semiconductor”

Semiconductor devices are small components that manage the movement of electrons in contemporary electronic gadgets. They are essential for powering a wide range of high-tech products, including cell phones, laptops, and vehicle sensors, as well as cutting-edge medical devices. However, the presence of material impurities or variations in temperature can interfere with electron flow, causing instability.

But now, theoretical and experimental physicists from the Würzburg-Dresden Cluster of Excellence ct.qmat—Complexity and Topology in Quantum Matter have developed a semiconductor device from aluminum-gallium-arsenide (AlGaAs). This device’s electron flow, usually susceptible to interference, is safeguarded by a topological quantum phenomenon. This groundbreaking research was recently detailed in the esteemed journal Nature Physics.

“Thanks to the topological skin effect, all of the currents between the different contacts on the quantum semiconductor are unaffected by impurities or other external perturbations. This makes topological devices increasingly appealing for the semiconductor industry. They eliminate the need for the extremely high levels of material purity that currently drive up the costs of electronics manufacturing,” explains Professor Jeroen van den Brink, director of the Institute for Theoretical Solid State Physics at the Leibniz Institute for Solid State and Materials Research in Dresden (IFW) and a principal investigator of ct.qmat.

Deciphering quantum enigmas: The role of nonlocal boxes in defining the boundaries of physical feasibility

A team of scientists from the University of Ottawa is offering insights into the mysteries of quantum entanglement. Their recent study, titled “Extending the known region of nonlocal boxes that collapse communication complexity” and published in Physical Review Letters (PRL), discloses that various theoretical quantum theory extensions are considered non-physical when tested against the principle of non-trivial communication complexity.

These quantum theory extensions can be symbolized by an array of nonlocal boxes, which are theoretical devices used to illustrate certain aspects of and nonlocality.

The study was conducted by Anne Broadbent, a full professor and research chair at the University of Ottawa’s Department of Mathematics and Statistics, along with Pierre Botteron, a Ph.D. candidate from the University of Toulouse, France, who is also a visiting student researcher at the University of Ottawa, and Marc-Olivier Proulx, an MSc alumnus of the Department of Physics at the University of Ottawa.

A new design for quantum computers

Creating a quantum computer powerful enough to tackle problems we cannot solve with current computers remains a big challenge for quantum physicists. A well-functioning quantum simulator—a specific type of quantum computer—could lead to new discoveries about how the world works at the smallest scales.

Quantum scientist Natalia Chepiga from Delft University of Technology has developed a guide on how to upgrade these machines so that they can simulate even more complex quantum systems. The study is now published in Physical Review Letters.

“Creating useful quantum computers and is one of the most important and debated topics in quantum science today, with the potential to revolutionize society,” says researcher Natalia Chepiga. Quantum simulators are a type of quantum computer. Chepiga explains, “Quantum simulators are meant to address open problems of quantum physics to push our understanding of nature further. Quantum computers will have wide applications in various areas of social life, for example, in finances, encryption, and data storage.”

Engineer designs molecules for our quantum future

Editor’s note: This story is part of Meet a UChicagoan, a regular series focusing on the people who make UChicago a distinct intellectual community. Read about the others here.

Wide is the spectrum of scientific inquiry, ranging from the philosophical— What is information?—to the banal — Where did I put that Allen wrench?

For University of Chicago graduate student Chloe Washabaugh, there is joy to be found in all of it. A Ph.D. student in quantum engineering at the Pritzker School of Molecular Engineering, Washabaugh fashions molecules into tiny quantum information processors, designing them to sense, send or store data—whatever the need.

A ‘quantum leap’ at room temperature: Ultra-low noise system achieves optical squeezing

In the realm of quantum mechanics, the ability to observe and control quantum phenomena at room temperature has long been elusive, especially on a large or “macroscopic” scale. Traditionally, such observations have been confined to environments near absolute zero, where quantum effects are easier to detect. But the requirement for extreme cold has been a major hurdle, limiting practical applications of quantum technologies.

Now, a study led by Tobias J. Kippenberg and Nils Johan Engelsen at EPFL, redefines the boundaries of what’s possible. The pioneering work blends quantum physics and to achieve control of at room temperature.

“Reaching the regime of room temperature quantum optomechanics has been an open challenge since decades,” says Kippenberg. “Our work realizes effectively the Heisenberg microscope—long thought to be only a theoretical toy model.”

Can Quantum Computers be Beaten by Classical Computers?

This post is also available in: he עברית (Hebrew)

Researchers from NYU discovered that classical computers could keep up with or even surpass quantum computers in certain circumstances. Classical computers can get a boost in speed and accuracy by adopting a new innovative algorithmic method, which could mean that they still have a future in a world of quantum computers.

Many experts believe that quantum computing is the future, and that we are veering away from classical computing, primarily because classical computers are significantly slower and weaker than their quantum-based counterparts. However, turns out that quantum computers are delicate and prone to information loss, and even if information is preserved it is difficult to convert it to classical information necessary for practical computation.

Are we ready for the quantum economy?

Earlier this week I went to a roundtable in London hosted by the UK government’s Office for Quantum to gather views from industry and academia about adapting the UK workforce to quantum technologies. The Quantum Skills Taskforce Workshop was co-hosted with techUK, a UK-based trade organization for the technology sector. Featuring 60 participants from academia and industry, the day featured lively discussion and debate about what the next decade has in store for the UK quantum sector.

All major economies around the world now seem to have their own quantum plan and the UK is no exception. In fact, the UK is onto its second National Quantum Strategy, which was launched in March 2023 by the Department for Science, Innovation and Technology (DSIT). Setting goals for the UK to become a “quantum-enabled economy” by 2033, it also established an Office for Quantum within the DSIT.

Scientists make Breakthrough in Quantum Materials Research

The advance will allow researchers to transform everyday materials into conductors for use in quantum computers. Researchers at the University of California, Irvine and Los Alamos National Laboratory, publishing in the latest issue of Nature Communications, describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.

“The materials we made are substances that exhibit unique electrical or quantum properties because of their specific atomic shapes or structures,” said Luis A. Jauregui, professor of physics & astronomy at UCI and lead author of the new paper.

“Imagine if we could transform glass, typically considered an insulating material, and convert it into efficient conductors akin to copper. That’s what we’ve done.”

Researchers solve a foundational problem in transmitting quantum information

Future quantum electronics will differ substantially from conventional electronics. Whereas memory in the latter is stored as binary digits, the former is stored as qubits, which can take many forms, such as entrapped electrons in nanostructures known as quantum dots. However, challenges in transmitting this information to anything further than the adjacent quantum dot have limited qubit design.

Now, in a study recently published in Physical Review Letters, researchers from the Institute of Industrial Science at the University of Tokyo are solving this problem, They developed a new technology for transmitting quantum information over perhaps tens to a hundred micrometers. This advance could improve the functionality of upcoming .

How can researchers transmit quantum information, from one quantum dot to another, on the same quantum computer chip? One way might be to convert electron (matter) information into light (electromagnetic wave) information—by generating light–matter hybrid states.

/* */