Menu

Blog

Archive for the ‘quantum physics’ category: Page 411

Apr 4, 2021

A New State of Light: Physicists Observe New Phase in Bose-Einstein Condensate of Light Particles

Posted by in categories: encryption, quantum physics

A single “super photon” made up of many thousands of individual light particles: About ten years ago, researchers at the University of Bonn produced such an extreme aggregate state for the first time and presented a completely new light source. The state is called optical Bose-Einstein condensate and has captivated many physicists ever since, because this exotic world of light particles is home to its very own physical phenomena.

Researchers led by Prof. Dr. Martin Weitz, who discovered the super photon, and theoretical physicist Prof. Dr. Johann Kroha have returned from their latest “expedition” into the quantum world with a very special observation. They report of a new, previously unknown phase transition in the optical Bose-Einstein condensate. This is a so-called overdamped phase. The results may in the long term be relevant for encrypted quantum communication. The study has been published in the journal Science.

Apr 3, 2021

String theorist Michio Kaku: ‘Reaching out to aliens is a terrible idea’

Posted by in categories: cosmology, information science, quantum physics

Michio Kaku is a professor of theoretical physics at City College, New York, a proponent of string theory but also a well-known populariser of science, with multiple TV appearances and several bestselling books behind him. His latest book, The God Equation, is a clear and accessible examination of the quest to combine Einstein’s general relativity with quantum theory to create an all-encompassing “theory of everything” about the nature of the universe.


The physicist on Newton finding inspiration amid the great plague, how the multiverse can unite religions, and why a ‘theory of everything’ is within our grasp.

Apr 2, 2021

Physicists observe new phase in Bose-Einstein condensate of light particles

Posted by in categories: particle physics, quantum physics

About 10 years ago, researchers at the University of Bonn produced an extreme aggregate photon state, a single “super-photon” made up of many thousands of individual light particles, and presented a completely new light source. The state is called an optical Bose-Einstein condensate and has captivated many physicists ever since, because this exotic world of light particles is home to its very own physical phenomena. Researchers led by Prof. Dr. Martin Weitz, who discovered the super photon, and theoretical physicist Prof. Dr. Johann Kroha now report a new observation: a so-called overdamped phase, a previously unknown phase transition within the optical Bose-Einstein condensate. The study has been published in the journal Science.

The Bose-Einstein is an extreme physical state that usually only occurs at very low temperatures. The particles in this system are no longer distinguishable and are predominantly in the same quantum mechanical state; in other words, they behave like a single giant “superparticle.” The state can therefore be described by a single wave function.

In 2010, researchers led by Martin Weitz succeeded for the first time in creating a Bose-Einstein condensate from particles (photons). Their special system is still in use today: Physicists trap light particles in a resonator made of two curved mirrors spaced just over a micrometer apart that reflect a rapidly reciprocating beam of light. The space is filled with a liquid dye solution, which serves to cool down the photons. The dye molecules “swallow” the photons and then spit them out again, which brings the light particles to the temperature of the dye solution—equivalent to room temperature. The system makes it possible to cool light particles because their natural characteristic is to dissolve when cooled.

Apr 1, 2021

Non-destructive detection could speed up cold-atom quantum sensors

Posted by in categories: particle physics, quantum physics

Researchers use microwaves to observe an atomic sample 30000 times a second without destroying it.

Mar 31, 2021

Study shows promise of quantum computing using factory-made silicon chips

Posted by in categories: computing, particle physics, quantum physics

The qubit is the building block of quantum computing, analogous to the bit in classical computers. To perform error-free calculations, quantum computers of the future are likely to need at least millions of qubits. The latest study, published in the journal PRX Quantum, suggests that these computers could be made with industrial-grade silicon chips using existing manufacturing processes, instead of adopting new manufacturing processes or even newly discovered particles.

For the study, researchers were able to isolate and measure the quantum state of a single electron (the ) in a silicon transistor manufactured using a ‘CMOS’ technology similar to that used to make chips in processors.

Furthermore, the spin of the electron was found to remain stable for a period of up to nine seconds. The next step is to use a similar manufacturing technology to show how an array of qubits can interact to perform quantum logic operations.

Mar 30, 2021

Colloidal quantum dot molecules manifesting quantum coupling at room temperature

Posted by in categories: particle physics, quantum physics

Circa 2019 o.o


In analogy to the coupling of atoms into molecules, the authors fuse colloidal semiconductor nanocrystals into quantum dot dimers. These nanocrystal ‘molecules’ exhibit significant quantum coupling effects, making them promising for applications in devices and potential quantum technologies.

Mar 30, 2021

Fiber Optics Could Be the Key to Million-Qubit Quantum Computers

Posted by in categories: computing, quantum physics

When the researchers used their system to measure the qubits’ state, they achieved an accuracy of 98 percent, exactly the same as when they carried out the measurement using a conventional electrical cable.

The authors acknowledge that work is already underway to try and reduce the heat produced by current approaches, including the development of thinner wires, proposals to replace wires with superconducting cables, or a process called multiplexing that makes it possible to send many signals over the same cable simultaneously.

But optical fiber is a well-established technology, and is already replacing electrical wires in many areas of computing thanks to its ability to carry far more data. The authors also point out that components used in this experiment were designed to work at room temperature, so optimizing them for cryogenic temperatures could provide significant performance gains.

Mar 30, 2021

‘Discovery Accelerator,’ a new Cleveland Clinic-IBM partnership, will use quantum computer, artificial intelligence to speed up medical innovations

Posted by in categories: chemistry, health, quantum physics, robotics/AI

CLEVELAND, Ohio — The Cleveland Clinic and IBM have entered a 10-year partnership that will install a quantum computer — which can handle large amounts of data at lightning speeds — at the Clinic next year to speed up medical innovations.

The Discovery Accelerator, a joint Clinic-IBM center, will feature artificial intelligence, hybrid cloud data storage and quantum computing technologies. A hybrid cloud is a data storage technology that allows for faster storage and analysis of large amounts of data.

The partnership will allow Clinic researchers to use the advanced tech in its new Global Center for Pathogen Research and Human Health for research into genomics, population health, clinical applications, and chemical and drug discovery.

Mar 29, 2021

The Higgs Boson and the Creation of Forces and Mass

Posted by in categories: nuclear energy, particle physics, quantum physics

A force is something which tends to change the state of rest or state of motion, or size, shape, the direction of motion of a body, etc… There are four fundamental forces: gravitational, electromagnetic, strong nuclear and weak nuclear forces. These forces are responsible for all possible interactions that can take place in this universe, from planets orbiting a star to protons and neutrons confined in the nucleus of an atom. In classical physics, the assumption was that an imaginary field exists, through which a force can be transmitted. But with the advent of quantum mechanics, this idea was changed radically. A field exists, but that is a quantum field. The field vibrates gently, and these vibrations give rise to particles and their corresponding antiparticle partners, i.e., particles with opposite charge. But these particles can exist for a limited amount of time. What gives rise to forces then? Particles called bosons. Bosons, named after Indian physicist Satyendra Nath Bose, are particles, the exchange of which give rise to forces. Bosons, along with the fermions (which make up matter), are referred to as elementary particles [1].

In quantum mechanics, energy can be temporarily ‘borrowed’ from a particle. But, as per Heisenberg’s uncertainty principle, the greater the amount of energy you ‘borrow’, the sooner you must return it [2].

Continue reading “The Higgs Boson and the Creation of Forces and Mass” »

Mar 29, 2021

Imaginary Numbers May Be Essential for Describing Reality

Posted by in category: quantum physics

A new thought experiment indicates that quantum mechanics doesn’t work without strange numbers that turn negative when squared.