From AI discovering a new antibiotic to IBM’s planned 100,000-qubit quantum computer, check out this week’s awesome tech stories from around the web.
Category: quantum physics – Page 326
A perovskite-based device that combines aspects of electronics and photonics may open doors to new kinds of computer chips or quantum qubits.
MIT
MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.
Particle-like quantum states called non-abelian anyons remember being swapped and could be useful for protecting information in quantum computers.
Scientists from CiQUS, ICN2, University of Cantabria, DIPC and DTU join forces to develop a versatile method for building brick-by-brick carbon nanocircuits with tunable properties.
Scientists from Korea’s POSTECH and the US’ Northeastern University have successfully manipulated light using non-Hermitian meta-gratings, turning optical loss into a beneficial tool. They’ve developed a new method for controlling light direction using specially designed meta-grating couplers. This breakthrough could advance quantum sensor research and lead to a range of new applications, such as disease diagnosis and pollution detection.
Light is a very delicate and vulnerable physical phenomenon. Light can be absorbed or reflected at the surface of a material depending on the matter’s properties or change its form and be converted into thermal energy. Upon reaching a metallic material’s surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call “optical loss.”
Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research. New findings in physics are being made adopting non-Hermitian theory that embraces optical loss, exploring ways to make use of the phenomenon, unlike general physics where optical loss is perceived as an imperfect component of an optical system. A ‘blessing in disguise’ is that which initially seems to be a disaster but which ultimately results in good luck. This research story is a blessing in disguise in physics.
The atoms in a piece of sapphire oscillate in two directions at once, a mimic of the hypothetically dead-and-alive feline.
IBM has announced a 10-year, $100 million initiative with the University of Tokyo and the University of Chicago to develop a quantum-centric supercomputer powered by 100,000 qubits.
Quantum-centric supercomputing is an entirely new – and as of now, unrealised – era of high-performance computing. A 100,000-qubit system would serve as a foundation to address some of the world’s most pressing problems that even the most advanced supercomputers of today may never be able to solve.
Year 2022 😗
A team of researchers found that a simulated black hole could have multiple masses simultaneously.
Light is a key carrier of information. It enables high-speed data transmission around the world via fiber-optic telecommunication networks. This information-carrying capability can be extended to transmitting quantum information by encoding it in single particles of light (photons).
“To efficiently load single photons into quantum information processing devices, they must have specific properties: the right central wavelength or frequency, a suitable duration, and the right spectrum,” explains Dr. Michał Karpinski, head of the Quantum Photonics Laboratory at the Faculty of Physics of the University of Warsaw, and an author of the paper published in Nature Photonics.
Researchers around the globe are building prototypes of quantum computers using a variety of techniques, including trapped ions, quantum dots, superconducting electric circuits, and ultracold atomic clouds. These quantum information processing platforms operate on a variety of time scales, from picoseconds through nanoseconds to even microseconds.
Quantum computing – “Youre gonna need a smarter IT team…”
• Quantum computing is expected to become a functioning reality in the next seven years. • The IT sector already has a skills gap. • Quantum computing is likely to add new skills to the shortage.
Quantum computing is expected to become a functioning reality within a generation, with many leading companies predicting it will be an adoptable technology by 2030. That’s going to bring a significant difference to traditional IT teams, as quantum computing is likely to involve different problems, different solutions, and a fairly new methodology to what we think of as the IT team’s role.