Toggle light / dark theme

A quantum device fabricated by Zhejiang University researchers could help to advance the design of quantum computers as it offers topological control over the units that store information within them. The team’s results were published in Science in December 2022.

Since their discovery around 2007, , known as , have been generating a lot of excitement due to their intriguing properties. For example, they are insulating in their interior, but conducting on their surfaces. This property stems from the topological nature of these materials, which makes them robust to deformations, so electrons moving along their surfaces resist any obstacles that might obstruct their flow.

Researchers have started to explore similar topological systems that are based on light rather than electrons—a field known as topological photonics. But so far, most such light-based systems have used classical forms of light rather than quantum ones. The ability to use quantum forms of light would open up many more possibilities and offer an opportunity to explore the quantum topology of light.

One of the first practical applications of the much-hyped but little-used quantum computing technology is now within reach, thanks to a unique approach that sidesteps the major problem of scaling up such prototypes.

The invention, by a University of Bristol physicist, who gave it the name “counterportation,” provides the first-ever practical blueprint for creating in the lab a wormhole that verifiably bridges space, as a probe into the inner workings of the universe.

By deploying a novel computing scheme, revealed in the journal Quantum Science and Technology, which harnesses the basic laws of physics, a small object can be reconstituted across space without any particles crossing. Among other things, it provides a “smoking gun” for the existence of a physical reality underpinning our most accurate description of the world.

Quantum computing technology is within reach due to an innovative method that overcomes the significant challenge of scaling up these prototypes.

The invention, by a University of Bristol physicist, who gave it the name ‘counterportation’, provides the first-ever practical blueprint for creating in the lab a wormhole that verifiably bridges space, as a probe into the inner workings of the universe.

How can we combat data theft, which is a real issue for society? Quantum physics has the solution. Its theories make it possible to encode information (a qubit) in single particles of light (a photon) and to circulate them in an optical fiber in a highly secure way. However, the widespread use of this telecommunications technology is hampered in particular by the performance of the single-photon detectors.

A team from the University of Geneva (UNIGE), together with the company ID Quantique, has succeeded in increasing their speed by a factor of twenty. This innovation, published in the journal Nature Photonics, makes it possible to achieve unprecedented performances in quantum .

Buying a train ticket, booking a taxi, getting a meal delivered: these are all transactions carried out daily via . These are based on payment systems involving an exchange of secret information between the user and the bank. To do this, the bank generates a , which is transmitted to their customer, and a private key, which it keeps secret. With the public key, the user can modify the information, make it unreadable and send it to the bank. With the private key, the bank can decipher it.

In 2022, the physics Nobel prize was awarded for experimental work showing that the quantum world must break some of our fundamental intuitions about how the Universe works.

Many look at those experiments and conclude that they challenge “locality” – the intuition that distant objects need a physical mediator to interact. And indeed, a mysterious connection between distant particles would be one way to explain these experimental results.

Others instead think the experiments challenge “realism” – the intuition that there’s an objective state of affairs underlying our experience. After all, the experiments are only difficult to explain if our measurements are thought to correspond to something real.

The Eqs. (3a) and (3b) suggest two important features of the location of neutrons and the spin by switching the choice of the post-selection: (i) The first lines indicate that the neutrons are found to be localized in different paths by switching the choice of the post-selection; they are found in the path I and II by applying the post-selection \({|{\Psi ^{+}_f}\rangle }\) and \({|{\Psi ^{-}_f}\rangle }\), respectively. (ii) The lines of the second part of the equations indicate that the spin in the different paths is found to be affected by switching the choice of the post-selection; the spin in path II and I is affected by applying the post-selection \({|{\Psi ^{+}_f}\rangle }\) and \({|{\Psi ^{-}_f}\rangle }\), respectively. Note that, in both choices of the post-selection, neutron and spin are localized in different paths, i.e., the location of the cat itself and its grin are interchanged by switching the choices of the post-selection. Since measurement of the locations of the neutron and the spin in the interferometer can be carried out independently of the delayed-choice process, the picking of a direction for post-selection, the influence of the delayed-choice on the preceding measurements can be investigated. We would like to point out that the experimental proposal in a recent publication35, contains a delayed choice scenario, too. The difference to the experiment presented in this report is that the authors of35 suggest a setup where two properties of the same system, represented by two non-commuting observables, are separated. In contrast to that, we deal in our experiment with the separation of one property from the system itself, hereby constituting the phenomenon of disembodiment. Further we would like to point out that in their Gedanken-experiment the effect of a change in the pre-selection is discussed that in our view has no retro-causal implications.

The experiment was carried out at the S18 silicon-perfect-crystal interferometer beam line at the high flux reactor at the Institute Laue Langevin. A schematic view of the experimental set-up is shown in Fig. 2.

Year 2014 face_with_colon_three If black holes have infinitely small sizes and infinitely density this also means that string theory would also solve the infinitely small problem because now we know that infinitely small sizes exist and if that exists then so does infinite energy from super string essentially filling out the rest of the mystery of the God equation. This means that computers could be infinitely small aswell saving a ton of space aswell.


If you’ve wondered how big is a black hole? then you’ve come to the right place! Learn about the sizes of black holes and the multi-layered answer.