Menu

Blog

Archive for the ‘quantum physics’ category: Page 323

Mar 8, 2021

Twistoptics: A New, Efficient Way to Control Optical Nonlinearity

Posted by in categories: biotech/medical, chemistry, cybercrime/malcode, engineering, quantum physics, solar power

Columbia researchers engineer first technique to exploit the tunable symmetry of 2D materials for nonlinear optical applications, including laser, optical spectroscopy, imaging, and metrology systems, as well as next-generation optical quantum information processing and computing.

Nonlinear optics, a study of how light interacts with matter, is critical to many photonic applications, from the green laser pointers we’re all familiar with to intense broadband (white) light sources for quantum photonics that enable optical quantum computing, super-resolution imaging, optical sensing and ranging, and more. Through nonlinear optics, researchers are discovering new ways to use light, from getting a closer look at ultrafast processes in physics, biology, and chemistry to enhancing communication and navigation, solar energy harvesting, medical testing, and cybersecurity.

Columbia Engineering researchers report that they developed a new, efficient way to modulate and enhance an important type of nonlinear optical process: optical second harmonic generation — where two input photons are combined in the material to produce one photon with twice the energy — from hexagonal boron nitride through micromechanical rotation and multilayer stacking. The study was published online on March 32021, by Science Advances.

Mar 8, 2021

Programmable optical quantum computer arrives late, steals the show

Posted by in categories: computing, quantum physics

New optical quantum computer overcomes previous limits, looks like a winner.

Mar 7, 2021

An FPGA-based real quantum computer emulator

Posted by in categories: computing, information science, quantum physics

While we cannot efficiently emulate quantum algorithms on classical architectures, we can move the weight of complexity from time to hardware resources. This paper describes a proposition of a universal and scalable quantum computer emulator, in which the FPGA hardware emulates the behavior of a real quantum system, capable of running quantum algorithms while maintaining their natural time complexity. The article also shows the proposed quantum emulator architecture, exposing a standard programming interface, and working results of an implementation of an exemplary quantum algorithm.

Mar 7, 2021

Introducing Silq- First Intuitive Programming Language for Quantum Computing

Posted by in categories: quantum physics, supercomputing

Silq is a new level of intuitive programming language developed to leverage the power of quantum computers enabling it to solve problems that would take a thousand years for classical computers or even supercomputers to solve.

Mar 7, 2021

New Research Reveals That Quantum Physics Causes Mutations in Our DNA

Posted by in categories: biotech/medical, chemistry, computing, quantum physics

An innovative study has confirmed that quantum mechanics plays a role in biological processes and causes mutations in DNA.

Quantum biology is an emerging field of science, established in the 1920s, which looks at whether the subatomic world of quantum mechanics plays a role in living cells. Quantum mechanics is an interdisciplinary field by nature, bringing together nuclear physicists, biochemists and molecular biologists.

In a research paper published by the journal Physical Chemistry Chemical Physics, a team from Surrey’s Leverhulme Quantum Biology Doctoral Training Centre used state-of-the-art computer simulations and quantum mechanical methods to determine the role proton tunneling, a purely quantum phenomenon, plays in spontaneous mutations inside DNA.

Mar 7, 2021

In the Race to Hundreds of Qubits, Photons May Have “Quantum Advantage”

Posted by in categories: particle physics, quantum physics, supercomputing

Canadian startup Xanadu says their quantum computer is cloud-accessible, Python programmable, and ready to scale.


Quantum computers based on photons may have some advantages over electron-based machines, including operating at room temperature and not temperatures colder than that of deep space. Now, say scientists at quantum computing startup Xanadu, add one more advantage to the photon side of the ledger. Their photonic quantum computer, they say, could scale up to rival or even beat the fastest classical supercomputers—at least at some tasks.

Continue reading “In the Race to Hundreds of Qubits, Photons May Have ‘Quantum Advantage’” »

Mar 7, 2021

Pivotal Discovery Could Open New Field of Quantum Technology Called “Magnonics”

Posted by in categories: engineering, quantum physics

University of Chicago, Argonne scientists tame photon-magnon interactions In a first-of-its-kind discovery, researchers in the University of Chicago’s Pritzker School of Molecular Engineering and Argonne National Laboratory announced they can directly control the interactions between two types of q.

Mar 5, 2021

Israel allocates $60 million to build first quantum computer

Posted by in categories: computing, quantum physics

Israel is investing 1.25 billion NIS in a national initiative to build up quantum proficiency, and this project in particular is part of that initiative.

Mar 4, 2021

Insights into plant consciousness from neuroscience, physics and mathematics: A role for quasicrystals?

Posted by in categories: computing, mathematics, neuroscience, quantum physics

There is considerable debate over whether plants are conscious and this, indeed, is an important question. Here I look at developments in neuroscience, physics and mathematics that may impact on this question. Two major concomitants of consciousness in animals are microtubule function and electrical gamma wave synchrony. Both these factors may also play a role in plant consciousness. I show that plants possess aperiodic quasicrystal structures composed of ribosomes that may enable quantum computing, which has been suggested to lie at the core of animal consciousness. Finally I look at whether a microtubule fractal suggests that electric current plays a part in conventional neurocomputing processes in plants.

Mar 4, 2021

This is the fastest random-number generator ever built

Posted by in categories: computing, internet, quantum physics

Laser generates quantum randomness at a rate of 250 trillion bits per second, and could lead to devices small enough to fit on a single chip.