Toggle light / dark theme

Researchers create an ‘imprint’ on a super photon

Thousands of light particles can merge into a type of “super photon” under certain conditions. Researchers at the University of Bonn have now been able to use “tiny nano molds” to influence the design of this so-called Bose-Einstein condensate. This enables them to shape the speck of light into a simple lattice structure consisting of four points of light arranged in quadratic form. Such structures could potentially be used in the future to make the exchange of information between multiple participants tap-proof.

The results have now been published in the journal Physical Review Letters (“Bose-Einstein Condensation of Photons in a Four-Site Quantum Ring”).

By creating indents on the reflective surfaces (shown on the left in an exaggerated form; the reflective surfaceis facing upwards), the researchers were able to imprint a structure ontothe photon condensate (right). (Image: IAP, Universität Bonn)

Lightning in a diamond to power the quantum revolution

Diamonds are forever 💎 A team of scientists from UniMelb, RMIT University and The City College of New York were able to observe lightning in a diamond ⚡️ Diamond chips can potentially be used in electronics and are more powerful than silicon. Tap to learn more ➡️


We also don’t yet fully understand how charges flow inside diamond, and how unavoidable impurities and defects affect these electrical properties.

In a recent study with colleagues from the University of Melbourne, RMIT University and the City College of New York, we sought to combine electrical measurements of a diamond optoelectronic device with 3D optical microscopy.

A device to sort photon states could be useful for quantum optical computer circuits

To build light-based quantum technologies, scientists and engineers need the ability to generate and manipulate photons as individuals or a few at a time. To build such quantum photonic logic gates that might be used in an optical quantum computer requires a special medium which allows strong and controlled interactions of just a few photons.

Quantum-dot-enabled infrared hyperspectral imaging with single-pixel detection

Widely utilized across various industries such as chemistry, agriculture, and military, this technology relies on strategies like dispersive optics and narrow-band light filters.

However, limitations exist in these approaches. Additionally, the fabrication of large-scale InGaAs detector arrays poses challenges, necessitating the development of new experimental methods and algorithms to advance infrared hyperspectral imaging technology in terms of miniaturization and cost-effectiveness.

In a paper published in Light Science & Applications, a team led by Professor Baoqing Sun and Yuan Gao from Shandong University introduce a novel method for encoding near-infrared spectral and spatial data.

Quantum Thermodynamics: Black Holes Might Not Be What We Thought

A recent study underscores the dynamic nature of black holes and extends similar thermodynamic characteristics to Extremely Compact Objects, advancing our comprehension of their behavior in quantum gravity scenarios.

A paper titled “Universality of the thermodynamics of a quantum-mechanically radiating black hole departing from thermality,” published in Physics Letters B highlights the importance of considering black holes as dynamical systems, where variations in their geometry during radiation emissions are critical to accurately describing their thermodynamic behavior.

Bridging black holes and extremely compact objects.

/* */