Toggle light / dark theme

Scientists Uncover Unique New 1D Superconducting State

A team led by Chen Xianhui and Professor Xiang Ziji from the CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics and the Department of Physics at the University of Science and Technology of China, uncovered a unique superconducting state characterized by one-dimensional superconducting stripes. This state is induced by the ferromagnetic proximity effect in an oxide heterostructure made up of ferromagnetic EuO and (110)-oriented KTaO3 (KTO). Their findings were published in Nature Physics.

The academic community concurs that the emergence of unconventional superconducting pairings is intricately linked to magnetism, particularly in copper oxides and iron-based high-temperature superconductors. Magnetic fluctuations are deemed pivotal in the genesis of high-temperature superconductivity, where the interplay between superconductivity and magnetism gives rise to superconducting states exhibiting unique spatial modulation. Superconducting oxide heterostructures encompassing magnetic structural units emerge as an optimal platform for investigating such superconducting states.

Building upon their prior achievements, the research team delved deeper into the superconductivity of this system and its relationship with the ferromagnetic proximity effect, meticulously adjusting the carrier concentration of the two-dimensional electron gas residing at the interface. They uncovered an intriguing in-plane anisotropy in superconductivity among samples with low carrier concentrations, which nevertheless vanished in samples exhibiting higher carrier concentrations.

Beyond Hydrogen: Discovery of Tiny New Atom Tauonium With Massive Implications

Recent discoveries in quantum physics have revealed simpler atomic structures than hydrogen, involving pure electromagnetic interactions between particles like electrons and their antiparticles. This advancement has significant implications for our understanding of quantum mechanics and fundamental physics, highlighted by new methods for detecting tauonium, which could revolutionize measurements of particle physics.

The hydrogen atom was once considered the simplest atom in nature, composed of a structureless electron and a structured proton. However, as research progressed, scientists discovered a simpler type of atom, consisting of structureless electrons (e-), muons (μ-), or tauons (τ-) and their equally structureless antiparticles. These atoms are bound together solely by electromagnetic interactions, with simpler structures than hydrogen atoms, providing a new perspective on scientific problems such as quantum mechanics, fundamental symmetry, and gravity.

Discovery of Electromagnetic Interaction Atoms.

Karmela Padavic-Callaghan

Karmela Padavic-Callaghan is a science writer reporting on physics, materials science and quantum technology. Karmela earned a PhD in theoretical condensed matter physics and atomic, molecular and optical physics from the University of Illinois Urbana-Champaign. Their research has been published in peer-reviewed journals, including Physical Review Letters and New Journal of Physics.

They studied ultracold atomic systems in novel geometries in microgravity and the interplay of disorder and quasiperiodicity in one-dimensional systems, including metamaterials. During their doctoral training, they also participated in several art-based projects, including co-developing a course on physics and art and serving as a production manager for a devised theatre piece titled Quantum Voyages.

Before joining New Scientist, Karmela was an assistant professor at Bard High School Early College in New York City, where they taught high school and college courses in physics and mathematics. Karmela’s freelance writing has been featured in Wired, Scientific American, Slate, MIT Technology Review, Quanta Magazine and Physics World.

3 Companies Already Working on the Next Phase of Artificial Intelligence (AI)

These businesses are building tech that could exceed the abilities of today’s AI.

The field of artificial intelligence is still in its early years, yet several businesses are already working on technology that can become the foundation for AI’s future. These companies are developing quantum computing systems capable of processing mountains of data in seconds, which would take decades for a conventional computer.

Quantum machines can execute multiple computations simultaneously, accelerating processing time, while typical computers must process data in a linear fashion. This means quantum systems can evolve AI beyond the abilities of the most powerful supercomputers, enabling AI to drive cars and help find cures to diseases.

Bizarre device uses ‘blind quantum computing’ to let you access quantum computers from home

Researchers have developed a new communication paradigm that can let them securely connect a PC to a quantum computer over the internet.

Known as “blind quantum computing,” the technique uses a fiber-optic cable to connect a quantum computer with a photon-detecting device and uses quantum memory — the equivalent of conventional computing memory for quantum computers. This device is connected directly to a PC, which can then perform operations on the quantum computer remotely. The details were outlined in a new study published April 10 in the journal Physical Review Letters.

/* */