Toggle light / dark theme

The twentieth century was a truly exciting time in physics.

From 1905 to 1973, we made extraordinary progress probing the mysteries of the universe: special relativity, general relativity, quantum mechanics, the structure of the atom, the structure of the nucleus, enumerating the elementary particles.

Then, in 1973, this extraordinary progress… stopped.

I mean, where are the fundamental discoveries in the last 50 years equal to general relativity or quantum mechanics?

Daniel Lidar, the Viterbi Professor of Engineering at USC and Director of the USC Center for Quantum Information Science & Technology, and Dr. Bibek Pokharel, a Research Scientist at IBM Quantum, have achieved a quantum speedup advantage in the context of a “bitstring guessing game.” They managed strings up to 26 bits long, significantly larger than previously possible, by effectively suppressing errors typically seen at this scale. (A bit is a binary number that is either zero or one). Their paper is published in the journal Physical Review Letters.

Quantum computers promise to solve certain problems with an advantage that increases as the problems increase in complexity. However, they are also highly prone to errors, or noise. The challenge, says Lidar, is “to obtain an advantage in the real world where today’s quantum computers are still ‘noisy.’” This noise-prone condition of current is termed the “NISQ” (Noisy Intermediate-Scale Quantum) era, a term adapted from the RISC architecture used to describe classical computing devices. Thus, any present demonstration of quantum speed advantage necessitates noise reduction.

The more unknown variables a problem has, the harder it usually is for a to solve. Scholars can evaluate a computer’s performance by playing a type of game with it to see how quickly an algorithm can guess hidden information. For instance, imagine a version of the TV game Jeopardy, where contestants take turns guessing a secret word of known length, one whole word at a time. The host reveals only one correct letter for each guessed word before changing the secret word randomly.

Even space and time if it’s quantum.


What will be the ultimate fate of our universe? There are a number of theories and possibilities, but at present the most likely scenario seems to be that the universe will continue to expand, most mass will eventually find its way into a black hole, and those black holes will slowly evaporate into Hawking Radiation, resulting in what is called the “heat death” of the universe. Don’t worry, this will likely take 1.7×10106 years, so we got some time.

But what about objects, like stellar remnants, that are not black holes? Will the ultimate fate of the universe still contain some neutron stars and cold white dwarfs that managed to never get sucked up by a black hole? To answer this question we have to back up a bit and talk about Hawking Radiation.

Stephen Hawking famously proposed this idea in 1975 – he was asked if black holes have a temperature, and that sent him down another type of hole until Hawking Radiation popped out as the answer. But what is Hawking Radiation? The conventional answer is that the vacuum of space isn’t really nothing, it still contains the quantum fields that make up spacetime. Those quantum field do not have to have zero energy, and so occasionally virtual particles will pop into existence, always in pairs with opposite properties (like opposite charge and spin), and then they join back together, cancelling each other out. But at the event horizon of black holes, the distance at which light can just barely escape the black hole’s gravity, a virtual pair might occur where one particle gets sucked into the black hole and the other escapes. The escaping particle is Hawking Radiation. It carries away a little mass from the black hole, causing it to glow slightly and evaporate very slowly.

University of Washington researchers have discovered they can detect atomic “breathing,” or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic “breath” could help researchers encode and transmit quantum information.

The researchers also developed a device that could serve as a new type of building block for quantum technologies, which are widely anticipated to have many future applications in fields such as computing, communications and sensor development.

The researchers published these findings June 1 in Nature Nanotechnology.

Whether it’s baking a cake, building a house, or developing a quantum device, the quality of the end product significantly depends on its ingredients or base materials. Researchers working to improve the performance of superconducting qubits, the foundation of quantum computers, have been experimenting using different base materials in an effort to increase the coherent lifetimes of qubits.

The coherence time is a measure of how long a retains quantum information, and thus a primary measure of performance. Recently, scientists discovered that using tantalum in makes them perform better, but no one has been able to determine why—until now.

Scientists from the Center for Functional Nanomaterials (CFN), the National Synchrotron Light Source II (NSLS-II), the Co-design Center for Quantum Advantage (C2QA), and Princeton University investigated the fundamental reasons that these qubits perform better by decoding the chemical profile of tantalum.

Quantum effects are phenomena that occur between atoms and molecules that can’t be explained by classical physics. It has been known for more than a century that the rules of classical mechanics, like Newton’s laws of motion, break down at atomic scales. Instead, tiny objects behave according to a different set of laws known as quantum mechanics.

For humans, who can only perceive the macroscopic world, or what’s visible to the naked eye, quantum mechanics can seem counterintuitive and somewhat magical. Things you might not expect happen in the quantum world, like electrons “tunneling” through tiny energy barriers and appearing on the other side unscathed or being in two different places at the same time in a phenomenon called superposition.

I am trained as a quantum engineer. Research in quantum mechanics is usually geared toward technology. However, and somewhat surprisingly, there is increasing evidence that nature – an engineer with billions of years of practice — has learned how to use quantum mechanics to function optimally. If this is indeed true, it means that our understanding of biology is radically incomplete. It also means that we could possibly control physiological processes by using the quantum properties of biological matter.

Joscha Bach is a cognitive scientist focusing on cognitive architectures, consciousness, models of mental representation, emotion, motivation and sociality.

Patreon: https://patreon.com/curtjaimungal.
Crypto: https://tinyurl.com/cryptoTOE
PayPal: https://tinyurl.com/paypalTOE
Twitter: https://twitter.com/TOEwithCurt.
Discord Invite: https://discord.com/invite/kBcnfNVwqs.
iTunes: https://podcasts.apple.com/ca/podcast/better-left-unsaid-wit…1521758802
Pandora: https://pdora.co/33b9lfP
Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e.
Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeverything.
Merch: https://tinyurl.com/TOEmerch.

0:00:00 Introduction.
0:00:17 Bach’s work ethic / daily routine.
0:01:35 What is your definition of truth?
0:04:41 Nature’s substratum is a “quantum graph”?
0:06:25 Mathematics as the descriptor of all language.
0:13:52 Why is constructivist mathematics “real”? What’s the definition of “real”?
0:17:06 What does it mean to “exist”? Does “pi” exist?
0:20:14 The mystery of something vs. nothing. Existence is the default.
0:21:11 Bach’s model vs. the multiverse.
0:26:51 Is the universe deterministic.
0:28:23 What determines the initial conditions, as well as the rules?
0:30:55 What is time? Is time fundamental?
0:34:21 What’s the optimal algorithm for finding truth?
0:40:40 Are the fundamental laws of physics ultimately “simple”?
0:50:17 The relationship between art and the artist’s cost function.
0:54:02 Ideas are stories, being directed by intuitions.
0:58:00 Society has a minimal role in training your intuitions.
0:59:24 Why does art benefit from a repressive government?
1:04:01 A market case for civil rights.
1:06:40 Fascism vs communism.
1:10:50 Bach’s “control / attention / reflective recall” model.
1:13:32 What’s more fundamental… Consciousness or attention?
1:16:02 The Chinese Room Experiment.
1:25:22 Is understanding predicated on consciousness?
1:26:22 Integrated Information Theory of consciousness (IIT)
1:30:15 Donald Hoffman’s theory of consciousness.
1:32:40 Douglas Hofstadter’s “strange loop” theory of consciousness.
1:34:10 Holonomic Brain theory of consciousness.
1:34:42 Daniel Dennett’s theory of consciousness.
1:36:57 Sensorimotor theory of consciousness (embodied cognition)
1:44:39 What is intelligence?
1:45:08 Intelligence vs. consciousness.
1:46:36 Where does Free Will come into play, in Bach’s model?
1:48:46 The opposite of free will can lead to, or feel like, addiction.
1:51:48 Changing your identity to effectively live forever.
1:59:13 Depersonalization disorder as a result of conceiving of your “self” as illusory.
2:02:25 Dealing with a fear of loss of control.
2:05:00 What about heart and conscience?
2:07:28 How to test / falsify Bach’s model of consciousness.
2:13:46 How has Bach’s model changed in the past few years?
2:14:41 Why Bach doesn’t practice Lucid Dreaming anymore.
2:15:33 Dreams and GAN’s (a machine learning framework)
2:18:08 If dreams are for helping us learn, why don’t we consciously remember our dreams.
2:19:58 Are dreams “real”? Is all of reality a dream?
2:20:39 How do you practically change your experience to be most positive / helpful?
2:23:56 What’s more important than survival? What’s worth dying for?
2:28:27 Bach’s identity.
2:29:44 Is there anything objectively wrong with hating humanity?
2:30:31 Practical Platonism.
2:33:00 What “God” is.
2:36:24 Gods are as real as you, Bach claims.
2:37:44 What “prayer” is, and why it works.
2:41:06 Our society has lost its future and thus our culture.
2:43:24 What does Bach disagree with Jordan Peterson about?
2:47:16 The millennials are the first generation that’s authoritarian since WW2
2:48:31 Bach’s views on the “social justice” movement.
2:51:29 Universal Basic Income as an answer to social inequality, or General Artificial Intelligence?
2:57:39 Nested hierarchy of “I“s (the conflicts within ourselves)
2:59:22 In the USA, innovation is “cheating” (for the most part)
3:02:27 Activists are usually operating on false information.
3:03:04 Bach’s Marxist roots and lessons to his former self.
3:08:45 BONUS BIT: On societies problems.

Subscribe if you want more conversations on Theories of Everything, Consciousness, Free Will, God, and the mathematics / physics of each.