Toggle light / dark theme

How Geometry Revealed Quantum Memory

The unexpected discovery of a geometric phase shows how math and physics are tightly intertwined.

By Manon Bischoff

I didn’t find math particularly exciting when I was in high school. To be honest, I only studied it when I went to university because it initially seemed quite easy to me. But in my very first math lecture as an undergraduate, I realized that everything I thought I knew about math was wrong. It was anything but easy. Mathematics, I soon discovered, can be really exciting—especially if you go beyond the realm of pure arithmetic.

New ‘gold-plated’ superconductor could be the foundation for massively scaled-up quantum computers in the future

The interface superconductor underwent a transition under a magnetic field and became more robust, the scientists said in the paper This suggests it has transformed into a “triplet superconductor.” — a type of superconductor that is more resistant to magnetic fields than conventional superconductors.

They conducted the research in conjunction with the National Institute of Standards and Technology. In earlier work, they demonstrated that thin films of gold and niobium naturally suppress decoherence — the loss of quantum properties due to external environmental interference.

Given its robust quantum qualities and its ability to suppress decoherence, this new superconducting material promises to be ideal for use in quantum computers, the scientists said. Minimizing decoherence within the system is a key challenge, which necessitates extreme measures to isolate the quantum computer from external influences, such as shifts in temperature or electromagnetic interference, as well as the use of error-correcting algorithms to ensure calculations remain accurate.

Scientists demonstrate controlled transfer of atoms using coherent tunneling between optical tweezers

An experimental setup built at the Technion Faculty of Physics demonstrates the transfer of atoms from one place to another through quantum tunneling between optical tweezers. Led by Prof. Yoav Sagi and doctoral student Yanay Florshaim from the Solid State Institute, the research was published in Science Advances.

First practical application of viscous electron flow realizes terahertz photoconductivity in graphene

When light hits the surface of some materials, namely those exhibiting a property known as photoresistance, it can induce changes in their electrical conductivity. Graphene is among these materials, as incident light can excite electrons within it, affecting its photoconductivity.

Researchers at the National University of Singapore report a deviation from standard photoresistive behaviors in doped metallic . Their paper, published in Nature Nanotechnology, shows that when exposed to continuous-wave terahertz (THz) radiation, Dirac electrons in this material can be thermally decoupled from the lattice, prompting their hydrodynamic transport.

“Our research has emerged from the growing recognition that traditional models of electron behavior don’t fully capture the properties of certain advanced materials, particularly in the ,” Denis Bandurin, Assistant Professor at NUS, lead of the experimental condensed matter physics lab and senior author of the paper, told Tech Xplore.

Quantum Computing Threatens Cybersecurity: Are We Prepared?

As quantum computing grows, researchers are urgently preparing for its impact on cybersecurity by developing quantum-resistant cryptographic protocols.

This research, led by experts at the National Center for Supercomputing Applications, focuses on safeguarding supercomputing infrastructures against quantum threats.

Quantum Computing and Cybersecurity.

What Is Quantum AI? Everything to Know About This Far-Out Twist

Artificial intelligence has been infiltrating our daily workflows and routine tasks for while now. It may be AI working in the background, as with Gemini’s integration across Google products, or you may be engaging more directly with popular content generators such as OpenAI’s ChatGPT and Dall-E. Looming in the not-too-distant future are amped-up virtual assistants.

As if AI itself weren’t futuristic enough, now there’s a whole new leap forward on the horizon: quantum AI. It’s a fusion of artificial intelligence with unconventional and still largely experimental quantum computing into a super-fast and highly efficient technology. Quantum computers will be the muscles, while AI will be the brains.

Here’s a quick breakdown of the basics to help you better understand quantum AI.

Discover the Quantum Power Hidden Inside Diamonds

The SPINNING project, under the leadership of the Fraunhofer Institute, is pioneering a quantum computer using diamond-based spin photons, promising lower cooling requirements, longer operating times, and lower error rates compared to conventional quantum systems.

This innovative approach leverages the unique properties of diamonds to create stable qubits, aiming for high scalability and fidelity in quantum computing. Recent achievements include the successful demonstration of qubit entanglement over long distances, significantly outperforming traditional quantum computers in error rate and coherence time.

The SPINNING project: innovating with diamond-based technology.

Scientists capture images of the cold ‘electron ice’ for first time

A small twist allowed scientists to capture a rare quantum phase that has been under the shadows for decades.


“Wigner molecular crystals are important because they may exhibit novel transport and spin properties that could be useful for future quantum technologies such as quantum simulations,” researchers at the Lawrence Berkeley National Laboratory (LBL) note.

For the first time, LBL researchers have captured direct images of the Wigner molecular crystal using scanning tunneling microscopy (STM) —- an imaging technique that produces high-resolution visuals of materials at the atomic scale.

“We are the first to directly observe this new quantum phase, which was quite unexpected. It’s pretty exciting,” said Feng Wang, one of the study authors and a physicist at the University of California, Berkeley.

/* */