China’s Zuchongzhi-3 ignites a fierce quantum race with Google’s Willow, pushing quantum singularity from theory toward reality faster than skeptics predicted.
Category: quantum physics – Page 25
This work presents a formal theory of consciousness, showing how quantum mechanics emerges from singularity, multiplicity, and trinity.
Buy me a coffee and support the channel: https://ko-fi.com/jkzero.
Part 3 of the groundbreaking but less-known theory of quantum mechanics proposed by Louis de Broglie in 1923. In this video de Broglie’s unification of wave and particles using his matter waves to show that Fermat’s principle of ray optics is equivalent to Maupertuis’ principle for the dynamics of particles. Although incomplete, this corresponds to the early development of de Broglie’s pilot-wave theory.
∘ Pilot-wave theory (part 1): the origin of de Broglie’s matter waves https://youtu.be/YQNEziGyDxU
∘ Pilot-wave theory (part 2): explaining Bohr’s atom https://youtu.be/5MMs6iFSiY8
∘ This is how the wave-particle duality of light was discovered https://youtu.be/f7JvywBOGYY
∘ Playlist Quantum Physics https://www.youtube.com/playlist?list=PL_UV-wQj1lvVxch-RPQIUOHX88eeNGzVH
∘ L. de Broglie, “Ondes et quanta,” Comptes Rendus Hebdomadaires des Séances de l’Aadémie des Sciences (Paris), 177,507 (1923)
∘ L. de Broglie, “Quanta de lumière, diffraction et interférences,” Comptes Rendus Hebdomadaires des Séances de l’Aadémie des Sciences (Paris), 177,548 (1923)
∘ L. de Broglie, “Les quanta, la théorie cinétique des gaz et le principe de Fermat,” Comptes Rendus Hebdomadaires des Séances de l’Aadémie des Sciences (Paris), 177,630 (1923)
∘ F. Grimaldi, “Physico-mathesis de lumine, coloribus et iride aliisque adnexis” (1665)
∘ I. Newton, “Optiks” (1704)
∘ L. de Broglie, “On the Theory of Quanta,” translation of doctoral thesis, Foundation Louis De Broglie (1924)
∘ A. Einstein, “Quantum theory of the monatomic ideal gas, Part II” Sitzungsber. Preuss. Akad. Wiss. 3, (1925)
M. de Broglie, public domain.
Diffraction half plane with rays, by MikeRun under CC BY-SA 4.0
Oualidia Lagoon, Morocco via Google Earth.
Matter Waves, AT&T Archives and History Center (1961)
Francesco Grimaldi, public domain.
First edition of Opticks, public domain.
Isaac Newton by Sir Godfrey Kneller, public domain.
Light refraction, by ajizai, public domain.
Interference pattern, by J.S. Diaz (own work)
Polarization clamp, by A.Davidhazy under CC BY-SA 4.0
Light bulb through diffraction grating, by R.D. Anderson under CC BY-SA 3.0
Davisson and Germer, public domain.
Davisson-Germer Figure 2, public domain.
Fifth Solvay Conference, AIP
Refraction with soda straw, by Bcrowell under CC BY-SA 1.0
Pierre Louis Moreau de Maupertuis, public domain.
P. Langevin, public domain.
Peter Debye, AIP
Portrait of Erwin Schrodinger, AIP
Eels Swimming in Aquarium by M. Ehlers, free use via Pexels https://www.pexels.com/video/eels-swimming-in-aquarium-10106765/
AIP: American Institute of Physics, Emilio Segrè Visual Archives.
CC BY-SA 1.0: https://creativecommons.org/licenses/by-sa/1.0/deed.en.
CC BY-SA 3.0 Deed: https://creativecommons.org/licenses/by-sa/3.0/deed.en.
CC BY-SA 4.0 Deed: https://creativecommons.org/licenses/by-sa/4.0/deed.en.
CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/deed.en
Real-space quantum vortices are key to many phenomena in modern physics. New experiments provide the first proof of vortices in momentum space, raising the prospect of exploring novel orbitronic phenomena.
It’s about my paper.
Dissolving polymers with organic solvents is the essential process in the research and development of polymeric materials, including polymer synthesis, refining, painting, and coating. Now more than ever recycling plastic waste is a particularly imperative part of reducing carbon produced by the materials development processes.
Polymers, in this instance, refer to plastics and plastic-like materials that require certain solvents to be able to effectively dissolve and therefore become recyclable, though it’s not as easy as it sounds. Utilizing Mitsubishi Chemical Group’s (MCG) databank of quantum chemistry calculations, scientists developed a novel machine learning system for determining the miscibility of any given polymer with its solvent candidates, referred to as χ (chi) parameters.
This system has enabled scientists to overcome the limitations arising from a limited amount of experimental data on the polymer-solvent miscibility by integrating massive data produced from the computer experiments using high-throughput quantum chemistry calculations.
Microwaves are usually used to interact with superconducting qubits, but optical photons can be processed at room temperature. The electro-optical transceiver presented here allows all-optical readout of a qubit without affecting its performance.
Ask almost any physicist what the most frustrating problem is in modern-day physics, and they will likely say the discrepancy between general relativity and quantum mechanics. That discrepancy has been a thorn in the side of the physics community for decades.
While there has been some progress on potential theories that could rectify the two, there has been scant experimental evidence to support those theories. That is where Selim Shahriar from Northwestern University, Evanston, comes in. He plans to work on a concept called the Space-borne Ultra-Precise Measurement of the Equivalent Principle Signature of Quantum Gravity (SUPREME-GQ), which he hopes will help collect some accurate experimental data on the subject once and for all.
To put it bluntly, the experiment is complicated. At its heart, it uses a space-based platform carrying a quantum-entangled sensor and some precise positioning systems. But understanding why it is useful to test quantum gravity first requires some explanation. Let’s first look at one of the most famous tenets of General Relativity—the Equivalence Principle.
At ultracold temperatures, interatomic collisions are relatively simple, and their outcome can be controlled using a magnetic field. However, research by scientists led by Prof. Michal Tomza from the Faculty of Physics of the University of Warsaw and Prof. Roee Ozeri from the Weizmann Institute of Science shows that this is also possible at higher temperatures. The scientists published their observations in the journal Science Advances.
Near absolute zero, interatomic collisions show simple behavior, and researchers can control and alter their effects. As the temperature increases, so does the kinetic energy, which radically complicates the collision mechanism. As a result, controlling the collisions becomes difficult. At least that is what has been thought so far.
Phase transitions, like water freezing into ice, are a familiar part of our world. But in quantum systems, they can behave even more dramatically, with quantum properties such as Heisenberg uncertainty playing a central role. Furthermore, spurious effects can cause the systems to lose, or dissipate, energy to the environment. When they happen, these “dissipative phase transitions” (DPTs) push quantum systems into new states.
There are different types or “orders” of DPTs. First-order DPTs are like flipping a switch, causing abrupt jumps between states. Second-order DPTs are smoother but still transformative, changing one of the system’s global features, known as symmetry, in subtle yet profound ways.
DPTs are key to understanding how quantum systems behave in non-equilibrium conditions, where arguments based on thermodynamics often fail to provide answers. Beyond pure curiosity, this has practical implications for building more robust quantum computers and sensors. For example, second-order DPTs could enhance quantum information storage, while first-order DPTs reveal important mechanisms of system stability and control.
However, as with much of quantum physics, this “language”—the interaction between spins—is extraordinarily complex. While it can be described mathematically, solving the equations exactly is nearly impossible, even for relatively simple chains of just a few spins. Not exactly ideal conditions for turning theory into reality…
A model becomes reality
Researchers at Empa’s nanotech@surfaces laboratory have now developed a method that allows many spins to “talk” to each other in a controlled manner – and that also enables the researchers to “listen” to them, i.e. to understand their interactions. Together with scientists from the International Iberian Nanotechnology Laboratory and the Technical University of Dresden, they were able to precisely create an archetypal chain of electron spins and measure its properties in detail. Their results have now been published in the renowned journal Nature Nanotechnology.