Toggle light / dark theme

Quantum Computing’s Holy Grail: Realizing Topologically Protected Qubits

A team of physicists has successfully created superconducting properties in materials known for conducting electricity only at their edges, marking a potential leap forward in quantum computing technology.

This achievement, which has eluded researchers for over a decade, was made possible through meticulous control of the experimental conditions.

Quantum Breakthroughs

Physicists Pinpoint the Quantum Origin of the Greenhouse Effect

“The moment when we wrote down the terms of this equation and saw that it all clicked together, it felt pretty incredible,” Wordsworth said. “It’s a result that finally shows us how directly the quantum mechanics links to the bigger picture.”

In some ways, he said, the calculation helps us understand climate change better than any computer model. “It just seems to be a fundamentally important thing to be able to say in a field that we can show from basic principles where everything comes from.”

How Tiny Quantum Twists Could Power Tomorrow’s Tech

Researchers at Penn State are working on advanced electronics using something called kink states, which are special pathways for electrons in materials. These paths could help create networks for quantum information, which is essential for the next generation of electronics. Credit: SciTechDaily.com.

Researchers at Penn State are developing advanced quantum electronics using kink states, which are unique electron pathways in semiconducting materials.

These states could potentially form the backbone of a quantum interconnect network, crucial for transmitting quantum information efficiently. The team has made significant advancements in controlling these states through innovative material combinations and device designs, enhancing the potential for scalable quantum electronics.

Scientists say they can reverse time in a quantum system. Here’s how

“We can rewind to a previous scene or skip several scenes ahead.”

An worldwide team of scientists claims to have found a means to speed up, slow down, and even reverse the clock of a given system by taking use of the peculiar qualities of the quantum universe, as reported by Spanish newspaper El País.

The scientists from the Austrian Academy of Sciences and the University of Vienna presented their findings in six separate papers. The basic principles of physics do not transfer intuitively onto the subatomic world, which is made up of quantum particles known as qubits, which can exist in several states at the same time, a phenomenon known as quantum entanglement.

Riverlane Locks Up $75M As Quantum Funding Continues Strong Year

Startup Riverlane helped continue what has been a strong year for venture funding in the quantum computing industry.

The U.K.-based firm — which specializes in quantum error correction technology — raised a $75 million Series C led by Planet First Partners. The round also includes participation from ETF Partners, EDBI, Cambridge Innovation Capital, Amadeus Capital Partners, the National Security Strategic Investment Fund and Altair

The company’s tech helps quantum computers perform without succumbing to eventual errors. Such computers typically can only perform a few hundred quantum operations before failure.

Quantum algorithm for photovoltaic maximum power point tracking

They also found that, although the power achieved by the conventional PSO algorithm was approximately 0.15% higher than that attained by the QPSO algorithm under the same conditions, the QPSO was able to beat the conventional PSO in more challenging conditions.

“Specifically, the quantum algorithm generates 3.33% more power in higher temperature tests and 0.89% more power in partial shading tests,” they emphasized. “Additionally, the quantum algorithm displays lower duty cycles, with a reduction of 3.9% in normal operating conditions, 0.162% in high-temperature tests, and 0.54% in partial shading tests.”

Long-Standing Quantum Problem Finally Solved

An answer to a decades-old question in the theory of quantum entanglement raises more questions about this quirky phenomenon.

Physicists have a long list of open problems they consider important for advancing the field of quantum information. Problem 5 asks whether a system can exist in its maximally entangled state in a realistic scenario, in which noise is present. Now Julio de Vicente at Carlos III University of Madrid has answered this fundamental quantum question with a definitive “no” [1]. De Vicente says that he hopes his work will “open a new research avenue within entanglement theory.”

From quantum sensors to quantum computers, many technologies require quantum mechanically entangled particles to operate. The properties of such particles are correlated in a way that would not be possible in classical physics. Ideally, for technology applications, these particles should be in the so-called maximally entangled state, one in which all possible measures of entanglement are maximized. Scientists predict that particles can exist in this state in the absence of experimental, environmental, and statistical noise. But it was unclear whether the particles could also exist in a maximally entangled state in real-world scenarios, where noise is unavoidable.

/* */