Toggle light / dark theme

How quantum computing will change our world | Intel

Jim Clarke, Director of Quantum Hardware at Intel Labs, discusses how chemistry and physics drive the development of qubits in these unique systems. These systems will bring mind-blowing computing power to the world in the next decade and beyond.

Subscribe now to Intel on YouTube: https://intel.ly/3IX1bN2

About Intel:
Intel, the world leader in silicon innovation, develops technologies, products and initiatives to continually advance how people work and live. Founded in 1968 to build semiconductor memory products, Intel introduced the world’s first microprocessor in 1971. This decade, our mission is to create and extend computing technology to connect and enrich the lives of every person on Earth.

Connect with Intel:
Visit Intel WEBSITE: https://intel.ly/Intel.
Follow Intel on X: https://intel.ly/Twitter.
Follow Intel on INSTAGRAM: https://intel.ly/Instagram.
Follow Intel on LINKEDIN: https://intel.ly/LinkedIn.
Follow Intel on TIKTOK: https://intel.ly/TikTok.

How quantum computing will change our world | Intel.
/ intel.

Quantum computers are advancing much faster than scientists expected

Quantum computing is one of those “just around the corner” technologies that have the scientific community split. Tech outfits such as Google and IBM have gone full throttle with both research and development and marketing as if they’re already here, while many independent researchers have claimed quantum computers will never work.

Most people working in the field, however, believe that quantum computers will be able to solve problems that classical computers can’t solve within the next 10 years.

This is according to a recent survey of 927 people with associations to the field of quantum computing (researchers, executives, press, enthusiasts, etc.) conducted by QuEra. Of those surveyed, 74.9% “expect quantum to be a superior alternative to classical computing for certain workloads” within the next 10 years.

Study unveils limits on the extent to which quantum errors can be ‘undone’ in large systems

Quantum computers have the potential of outperforming conventional computers on some practically relevant information processing problems, possibly even in machine learning and optimization. Yet their large-scale deployment is not yet feasible, largely due to their sensitivity to noise, which causes them to make errors.

Inside Cybersecurity; Challenges, Emerging Tech, Mitigating Threats

Link to newsletter:


Dear Subscribers, please see the latest Security & tech Insights newsletter covering emerging issues, trends and potential solutions in the world of cybersecurity. Thanks for reading and stay safe! Best, Chuck Brooks PS checkout my new book on Amazon: Inside Cyber: How AI, 5G, and Quantum Computing Will Transform Privacy and Our Security Amazon.com : Inside Cyber: How AI, 5G, and Quantum Computing Will Transform Privacy and Our Security: 9781394254941: Brooks, Chuck: Books.

/* */