Toggle light / dark theme

Observing gain-induced group delay between multiphoton pulses generated in a spontaneous down-conversion source

Spontaneous parametric down-conversion (SPDC) and spontaneous four-wave mixing are powerful nonlinear optical processes that can produce multi-photon beams of light with unique quantum properties. These processes could be leveraged to create various quantum technologies, including computer processors and sensors that leverage quantum mechanical effects.

Researchers at the National Research Council of Canada and École Polytechnique de Montréal recently carried out a study observing the effects emerging in the SPDC process. Their paper, published in Physical Review Letters, reports the observation of a gain-induced group delay in multi-photon pulses generated in SPDC.

“The inspiration for this paper came from studying a process called SPDC,” Nicolás Quesada, senior author of the paper, told Phys.org. “This is a mouthful to say that certain materials are able to take a violet photon (the particle light is made of) and transform it into two red photons.

Experiment verifies a connection between quantum theory and information theory

Researchers from Linköping University together with colleagues from Poland and Chile have confirmed a theory that proposes a connection between the complementarity principle and entropic uncertainty. Their study is published in the journal Science Advances.

“Our results have no clear or direct application right now. It’s basic research that lays the foundation for future technologies in and quantum computers. There’s enormous potential for completely new discoveries in many different research fields,” says Guilherme B Xavier, researcher in quantum communication at Linköping University, Sweden.

But to understand what the researchers have shown, we need to start at the beginning.

Precision mass measurements of atomic nuclei reveal proton halo structure

Researchers at the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences, together with their collaborators, have achieved the first precise mass measurements of several exotic atomic nuclei. Using this mass data, they have determined the proton dripline for aluminum, phosphorus, sulfur, and argon elements, and proposed a new approach to uncover proton halo structures.

The results were published in Physical Review Letters on November 27.

The is a quantum many-body system composed of protons and neutrons, typically exhibiting a size similar to that of neighboring nuclei. A halo is an exotic nuclear structure found in weakly bound nuclei, characterized by one or more valence nucleons that display an extended spatial distribution, resulting in a radius significantly larger than that of neighboring nuclei.

Revolutionary AI Unlocks the Superfluidity Secrets of Neutron Stars

Researchers find evidence of superfluidity in low-density neutron matter by using highly flexible neural-network representations of quantum wave functions.

A groundbreaking study employing artificial neural networks has refined our understanding of neutron superfluidity in neutron stars, proposing a cost-effective model that rivals traditional computational approaches in predicting neutron behavior and emergent quantum phenomena.

Neutron Superfluidity in Neutron Stars.

Physicists propose a quantum–optomechanical solution to dark-matter detection

An interdisciplinary collaboration between condensed-matter, quantum-optics and particle physicists has the potential to crack the search for low-mass dark matter. The proposed quantum detector builds on EQUS studies of elementary excitations in superfluid helium and advances in opto-mechanics.

Led by EQUS Research Fellow Dr. Chris Baker (UQ), study proposes direct detection of low-mass dark matter via its interactions with confined in an optomechanical cavity.

Optomechanical dark matter instrument for direct detection” was published in Physical Review D in August 2024.

Quantum Scientists Just Made a Major Breakthrough Using 31 Superconducting Qubits

Scientists have achieved unprecedented control over quantum transport using a 31-qubit superconducting processor, opening new possibilities for next-generation electronics and thermal management. This approach allows researchers to observe and manipulate quantum particles with extraordinary precision, potentially revolutionizing how we develop future technologies.

The research, led by teams from Singapore and China, marks a significant advance in understanding how particles, energy, and information flow at the quantum level. This breakthrough could accelerate development of more efficient nanoelectronics and thermal management systems.

Learn Quantum Physics More Easily With This Breakthrough Approach

A team of physics educators from Italy, Hungary, Slovenia, and Germany is pioneering a new approach to teaching quantum physics in schools. Traditional classroom methods have typically emphasized the history and origins of quantum physics, which can often create challenges for learners.

The researchers, including physics education specialist Professor Philipp Bitzenbauer from Leipzig University, focus on qubits—two-state systems that are both the simplest and most crucial quantum systems, capable of describing many situations. Mastering the control and manipulation of these qubits is fundamental to advancing modern quantum technologies.

According to Bitzenbauer, until now there have been no empirical studies of the effectiveness of these approaches using two-state systems in developing conceptual understanding in learners. There is also a lack of scientific research on the specific advantages and disadvantages for learning of different teaching approaches based on two-state systems.

/* */