Toggle light / dark theme

Quantum vortices confirm superfluidity in supersolid

Supersolids are a new form of quantum matter that has only recently been demonstrated. The state of matter can be produced artificially in ultracold, dipolar quantum gases. A team led by Innsbruck physicist Francesca Ferlaino has now demonstrated a missing hallmark of superfluidity, namely the existence of quantized vortices as a system’s response to rotation. They have observed tiny quantum vortices in the supersolid, which also behave differently than previously assumed.

Controlling skyrmions at room-temperature in 2D topological spin structure technology

The Korea Research Institute of Standards and Science (KRISS) has, for the first time in the world, generated and controlled skyrmions at room temperature in two-dimensional (2D) materials. This achievement reduces power consumption compared to traditional three-dimensional (3D) systems while maximizing quantum effects, making it a core technology for the development of room-temperature quantum computers and AI semiconductors.

Kagome superconductor breaks the rules at record-breaking temperatures

Using muon spin rotation at the Swiss Muon Source SmS, researchers at the Paul Scherrer Institute (PSI) have discovered that a quantum phenomenon known as time-reversal symmetry breaking occurs at the surface of the Kagome superconductor RbV3Sb5 at temperatures as high as 175 K. This sets a new record for the temperature at which time-reversal symmetry breaking is observed among Kagome systems.

Physicists Stir a Supersolid For First Time, Proving Its Bizarre Dual Nature

Scientists on Wednesday said that they have successfully stirred a strange matter called a “supersolid” – which is both rigid and fluid – for the first time, providing direct proof of the dual nature of this quantum oddity.

In everyday life, there are four states of matter – solid, liquid, gas, and the rarer plasma.

But physicists have long been investigating what are known as “exotic” states of matter, which are created at incredibly high energy levels or temperatures so cold they approach absolute zero (−273.15 degrees Celsius or-459.67 degrees Fahrenheit).

First images of electrons forming strange solid crystals

Under the right circumstances, electrons can actually “freeze” into a bizarre solid form. Now, physicists at Berkeley Lab have created and taken the first ever direct images of this structure.

At low temperatures and densities, groups of electrons can crystallize into a solid form known as a Wigner crystal, named after theoretical physicist Eugene Wigner who first predicted their existence in the 1930s. It was only a few years ago that scientists first directly detected and imaged them.

Now, a team has for the first time imaged a new quantum phase of electrons – a related structure called a Wigner molecular crystal. Basically, it’s the same solid electron phase, except that groups of electrons settle in each place on a lattice instead of single electrons.

Breaking Physics: Scientists Reveal “Impossible” State of Matter That’s Both Solid and Superfluid

In a breakthrough, scientists confirmed superfluid properties in supersolids by observing quantized vortices. Using precision techniques, the team stirred a rotating supersolid, revealing unique vortex dynamics and offering new insights into the coexistence of solid and fluid characteristics. This discovery paves the way for studying exotic quantum matter and has implications for astrophysical phenomena.

Supersolids: A Quantum Paradox

Matter that behaves like both a solid and a superfluid at the same time might sound impossible. But more than 50 years ago, physicists predicted that quantum mechanics could allow such a state. In this unique state, collections of particles exhibit properties that seem contradictory. Francesca Ferlaino from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences explains, “It is a bit like Schrödinger’s cat, which is both alive and dead, a supersolid is both rigid and liquid.”

/* */