A study in Nature Physics has realized a dual-species Rydberg array combining rubidium (Rb) and cesium (Cs) atoms to enhance quantum computing and its applications.
Programmable quantum computers have the potential to efficiently simulate increasingly complex molecular structures, electronic structures, chemical reactions, and quantum mechanical states in chemistry that classical computers cannot. As the molecule’s size and complexity increase, so do the computational resources required to model it.
To achieve remarkable performances, quantum computing systems based on multiple qubits must attain high-fidelity entanglement between their underlying qubits. Past studies have shown that solid-state quantum platforms—quantum computing systems based on solid materials—are highly prone to errors, which can adversely impact the coherence between qubits and their overall performance.
A quantum experiment revealed two observers can experience different, coexisting realities.
Our understanding of reality is often shaped by biases—our senses, cultures, and knowledge influence how we see the world. But even science, often regarded as a path to objective truth, may not always offer a single, consistent version of reality. A recent experiment testing a 1961 thought experiment by Nobel Prize winner Eugen Wigner highlights this issue, showing that two versions of reality can coexist in the quantum world.
Wigner’s Friend: The Thought Experiment Wigner’s thought experiment, known as “Wigner’s Friend,” explores a scenario in quantum mechanics where two observers can experience contradictory realities. The setup involves a quantum system, such as a photon with two possible polarizations (horizontal or vertical), that exists in a state of superposition, meaning both states exist at the same time until measured.
Now in Quantum: by Yifan Hong, David T. Stephen, and Aaron J. Friedman https://doi.org/10.22331/q-2024-10-10-1499
Yifan Hong, David T. Stephen, and Aaron J. Friedman, Quantum 8, 1499 (2024). We constrain a broad class of teleportation protocols using insights from locality. In the “standard” teleportation protocols we consider, all outcome-dependent unitaries are Pauli operators conditioned on linear functions of the measurement outcomes. We find that all such protocols involve preparing a “resource state” exhibiting symmetry-protected topological (SPT) order with Abelian protecting symmetry $\mathcal{G}_{k}= (\mathbb{Z}_2 \times \mathbb{Z}_2)^k$. The $k$ logical states are teleported between the edges of the chain by measuring the corresponding $2k$ string order parameters in the bulk and applying outcome-dependent Paulis. Hence, this single class of nontrivial SPT states is both necessary and sufficient for the standard teleportation of $k$ qubits. We illustrate this result with several examples, including the cluster state, variants thereof, and a nonstabilizer hypergraph state.
Research on superconductivity has taken a significant leap with Princeton Universitys exploration of edge supercurrents in topological superconductors like molybdenum telluride.
Initially elusive, these supercurrents have been observed and enhanced through experiments with niobium, leading to intriguing phenomena such as stochastic switching and anti-hysteresis, altering the understanding of electron behavior in superconductors.
Superconductivity and Topological Materials.