Toggle light / dark theme

Joachim Keppler — The Path to Sentient Robots: AI Consciousness in the Light of New Insights …

The question of the conditions under which Artificial Intelligence (AI) can transcend the threshold of consciousness can only be answered with certainty if we manage to unravel the mechanism underlying conscious systems. The most promising strategy to approach this goal is to unveil the brain’s functional principle involved in the formation of conscious states and to transfer the findings to other physical systems. Empirical evidence suggests that the dynamical features of conscious brain processes can be ascribed to self-organized criticality and phase transitions, the deeper understanding of which requires methods of quantum electrodynamics (QED). QED-based model calculations reveal that both the architectural structure and the chemical composition of the brain are specifically designed to establish resonant coupling to the ubiquitous electromagnetic vacuum fluctuations, known as zero-point field (ZPF). A direct consequence of resonant brain-ZPF coupling is the selective amplification of field modes, which leads us to conclude that the distinctive feature of conscious processes consists in modulating the ZPF. These insights support the hypothesis that the ZPF is a foundational field with inherent phenomenal qualities, implying that the crucial condition for AI consciousness lies in a robot’s capacity to tap into the phenomenal spectrum immanent in the ZPF.

Full Title: The Path to Sentient Robots: AI Consciousness in the Light of New Insights into the Functioning of the Brain.

String theory provides a new take on the expansion of the Universe

String theory could reshape our understanding of the Universe’s accelerating expansion and unlock the mysteries of dark energy.

The accelerating expansion of the Universe might not be just an unexplained phenomenon — according to a new proposal by theoretical physicists, it could be a fundamental feature woven into the very fabric of reality.

The researchers suggest that space is not an empty vacuum but that instead our whole Universe is a complex quantum object called the Glauber-Sudarshan state, where countless interacting strings are constantly born and disappear. This hypothesis breathes new life into string theory, which has long aimed to unify all the fundamental forces of nature.

Quantum Harmonic Oscillator Behavior at Room Temperature

We are used to the notion of classical harmonic oscillators; these are oscillators fluctuating coherently-this is, symmetrically-around their equilibrium position, experiencing a restoring force F proportional to the displacement x following the relationship F = – kx, being k a positive constant commonly known in the mechanics of ideal springs.

If F is the only force acting on the system (which means there is no friction with the environment) the system is called a simple harmonic oscillator, and it undergoes a sinusoidal oscillations about the equilibrium point, with a constant amplitude and a constant frequency that does not depend on the amplitude.

In real life, for example in the case of a spring, we see a damped oscillation because it will decrease with time due to friction. So basically, the harmonic oscillation is a very useful idealization that allows to simplify many physical problems.

Proof-of-concept design shrinks quantum rotation sensor to micron scale

Most of the current atom interferometers are large instruments, occupying buildings and requiring towers that can reach tens of meters in height. Now, University of Michigan physicists have developed a design for a quantum rotation sensor with a core size that is barely visible to the human eye.

The proof-of-concept design could help bring atom interferometer-based out of the laboratory and into the world, according to lead author and U-M doctoral student Bineet Dash.

Scientists could use atom interferometers in quests ranging from the continual hunt for the tiny ripples in the fabric of our universe caused by gravitational waves to understanding minute, localized changes in Earth’s gravity caused by melting ice sheets in Antarctica, Dash says. But because of their size, atom interferometers are typically bound to laboratory settings. Currently, the most sensitive atom interferometers use tall towers inside buildings to shoot beams of atoms across tens of meters to gather information.

How a classical computer beat a quantum computer at its own game

Researchers explore an intriguing phenomenon in quantum systems, drawing inspiration from a recent quantum computing experiment.


Earlier this year, researchers at the Flatiron Institute’s Center for Computational Quantum Physics (CCQ) announced that they had successfully used a classical computer and sophisticated mathematical models to thoroughly outperform a quantum computer on a task that some thought only quantum computers could solve.

See my new paper proved that rotating blackhole could create stable wormhole and how to build stargates

https://lnkd.in/gPGP3Q3j In this article, we propose a new Feynman’s path integral approach and extend this formalism into curved spacetime and consider its possible implications for black hole physics. While still a work in progress, this model suggests that black holes, rather than representing the final stages of gravitational collapse, might contribute to the formation of new universes. We carefully examine both Schwarzschild and Kerr metric of rotating and non-rotating black holes. We derived that rotating black hole will create a traversable worm hole without exotic particles and non-rotating back hole will create another universe by interpretation of path integral finally. We proposed the way how to create the wormhole between two interstellar space using qubits. This proved ER=EPR. John Preskill Dear Professor Preskill Please help me check it Sir.

Next-Level Speed: How 3D Integrated Photonics Is Accelerating Computing

A new photonic processor efficiently solves complex NP-complete problems using light, offering faster computation and scalability for future applications in optical neural networks and quantum computing.

As technology continues to evolve, the limitations of traditional electronic computers are becoming more evident, particularly when addressing highly complex computational problems. NP-complete problems, which grow exponentially in difficulty as their size increases, are among the most challenging in computer science. These issues affect a wide range of fields, from biomedicine to transportation and manufacturing. To find more efficient solutions, researchers are turning to alternative computing methods, with optical computing showing significant promise.

Breakthrough in Photonic Processor Development.

Malur Narayan Shares About A Large Language Model Trained with Diverse Histories & Inclusive Voices

Here’s Malur Narayan of Latimer AI sharing about removing bias, and setting a standard for identifying and measuring it in artificial intelligence systems, and LLM’s.

Malur is a tech leader in AI / ML, mobile, quantum, and is an advocate of tech for good, and responsible AI.

Meet the rising stars,…


Malur Narayan is a tech leader in AI/ML, Mobile, Quantum and Tech for Good. He focuses on three different principals: Equity, Sustainability, and Mental Health. Malur is a board member, eternal optimist and a forever student.

Connect with Malur on LinkedIn: / malur.