The global collaboration that delivered us not one but two pictures of supermassive black holes has now peered into one of the brightest lights in the Universe.
The Event Horizon Telescope (EHT), a telescope array comprising radio antennae around the world, studied a distant quasar named NRAO 530, whose light has traveled for 7.5 billion years to reach us.
The resulting data show us the quasar’s engine in incredible detail and will, astronomers say, help us understand the complex physics of these incredible objects, and how they generate such blazing light.
Summary: Researchers explain how deep neural networks are able to learn complex physics.
Source: Rice University.
One of the oldest tools in computational physics — a 200-year-old mathematical technique known as Fourier analysis — can reveal crucial information about how a form of artificial intelligence called a deep neural network learns to perform tasks involving complex physics like climate and turbulence modeling, according to a new study.
We’re still not sure exactly what dark energy is, but it may have played a key role in the early universe.
Physicists can’t see or measure dark energy (hence the name). The only clue that it exists is how it affects the rest of the universe; dark energy is the force that’s driving the universe to keep expanding faster. Physicists Florian Niedermann of Stockholm University and Martin Sloth of the University of Southern Denmark propose that if dark energy formed bubbles in the dark plasma of the early universe, it could solve one of the biggest mysteries in modern physics.
🙏 We would like to thank our generous Patreon supporters who make Two Minute Papers possible: Aleksandr Mashrabov, Alex Balfanz, Alex Haro, Andrew Melnychuk, Benji Rabhan, Bryan Learn, B Shang, Christian Ahlin, Edward Unthank, Eric Martel, Geronimo Moralez, Gordon Child, Jace O’Brien, Jack Lukic, John Le, Jonas, Jonathan, Kenneth Davis, Klaus Busse, Kyle Davis, Lorin Atzberger, Lukas Biewald, Matthew Allen Fisher, Matthew Valle, Michael Albrecht, Michael Tedder, Nevin Spoljaric, Nikhil Velpanur, Owen Campbell-Moore, Owen Skarpness, Rajarshi Nigam, Ramsey Elbasheer, Richard Sundvall, Steef, Taras Bobrovytsky, Ted Johnson, Thomas Krcmar, Timothy Sum Hon Mun, Torsten Reil, Tybie Fitzhugh, Ueli Gallizzi. If you wish to appear here or pick up other perks, click here: https://www.patreon.com/TwoMinutePapers.
A small team of astrophysicists affiliated with several institutions in China has found evidence that suggests if wormholes are real, they might magnify light by 100,000 times. In their paper published in the journal Physical Review Letters, the group describes the theories they have developed and possible uses for them.
Prior theoretical efforts have suggested that wormholes might exist in the universe, described as tunnels of a sort, connecting different parts of the universe. Some in the physics community have suggested that it may be possible to traverse such tunnels, allowing for faster-than-light travel across the universe. The researchers note that prior research has shown that black holes have such a strong gravitational pull that they are able to bend light, a phenomenon known as microlensing. They then wondered if wormholes, if they exist, also exhibit microlensing.
Proving that wormholes cause microlensing would, of course, involve first proving that wormholes exist. Still, the researchers suggest that general relativity and other theories could clarify whether the idea is even possible. In their work, they discovered that it was possible to calculate how an electric charge associated with a wormhole would warp the light passing by it. They also found theoretical evidence that wormhole microlensing would be similar to black hole lensing, which, they note, would make it difficult to tell the two apart.
A stone can be anywhere in space. It can be here. Or it can be an inch to the left. Or it can be half an inch further to the left. Or it can be an infinitesimal fraction of an inch even further to the left. Space is infinitely divisible.
The graphs of Wolfram Physics, however, are discrete.
If, as Stephen Wolfram proposes, the universe is a graph, then you can’t be just anywhere in space. It makes sense to think about a node of the graph as a position in space. It makes no sense to think about anywhere in between the nodes as positions in space. This space is not infinitely divisible.
It’s as if a stone could be here in space, or here in space, but nowhere in between.
Gravitational waves are ripples in the fabric of space. Waves that originated in the early universe could carry important information about the phenomena that occurred there.