Toggle light / dark theme

Quantum oddity points to entirely new class of subatomic particles

Quantum mechanics has always left people scratching their heads. Tiny particles seem to break usual laws of nature, hinting at puzzling scenarios that have intrigued physicists for decades, often sparking debates on how these subatomic oddities might push the limits of future technology.

One curious area in this field involves charges that behave in fractions, providing glimpses into phenomena that defy classical logic.

Scientists have spent years studying these strange properties, hoping to uncover new knowledge about how particles might transform the way we store and process information.

Breaking a century-old physics barrier: Scientists achieve perfect wave trapping with simple cylinders

A joint research team has successfully demonstrated the complete confinement of mechanical waves within a single resonator—something long thought to be theoretically impossible. Their findings, published on April 3 in Physical Review Letters, mark a major breakthrough in the century-old mystery of bound states in the continuum (BIC). The team is from POSTECH (Pohang University of Science and Technology) and Jeonbuk National University.

Many technologies around us—from smartphones and ultrasound devices to radios—rely on resonance, a phenomenon in which waves are amplified at specific frequencies. However, typical resonators gradually lose energy over time, requiring constant energy input to maintain their function.

Nearly a century ago, Nobel laureates John von Neumann and Eugene Wigner proposed a counterintuitive concept: under certain conditions, waves could be trapped indefinitely without any energy leakage. These so-called bound states in the continuum (BIC) are like whirlpools that remain in place even as a river flows around them. But for decades, scientists believed this phenomenon could not exist in a compact, single-particle system.

Tiny Magnets, Big Potential: How Spin Waves Let Particles “Talk” in 2D Materials

Physicists have discovered that electronic excitations in 2D magnets can interact through spin waves – ripples in a material’s magnetic structure.

This breakthrough allows excitons (electron-hole pairs) to influence one another indirectly, like objects disturbing water. The interaction, demonstrated in a magnetic semiconductor called CrSBr, can be toggled on and off with magnetic fields, opening doors to revolutionary technologies like optical modulators, logic gates, and especially quantum transducers for future quantum computers and communication systems.

Discovery Unlocks Spin-Wave Mediated Interactions.

Researchers discover a new type of quantum entanglement

A study from Technion unveils a newly discovered form of quantum entanglement in the total angular momentum of photons confined in nanoscale structures. This discovery could play a key role in the future miniaturization of quantum communication and computing components.

Quantum physics sometimes leads to very unconventional predictions. This is what happened when Albert Einstein and his colleagues, Boris Podolsky and Nathan Rosen (who later founded the Faculty of Physics at Technion), found a scenario in which knowing the state of one particle immediately affects the state of the other particle, no matter how great the distance between them. Their historic 1935 paper was nicknamed EPR after its three authors (Einstein–Podolsky–Rosen).

The idea that knowing the state of one particle will affect another particle located at a huge distance from it, without physical interaction and information transfer, seemed absurd to Einstein, who called it “spooky action at a distance.”

New experiment halves weight limit of elusive neutrinos

Scientists trying to discover the elusive mass of neutrinos, tiny “ghost particles” that could solve some of the universe’s biggest mysteries, announced a new limit on Thursday for how much they could weigh, halving the previous estimate.

Since the existence of was proposed nearly a century ago, scientists around the world have struggled to learn much about them—particularly their mass.

This is important because the neutrino, as the most abundant particle in the universe, “weaves a thread that connects the infinitely small and the infinitely large,” Thierry Lasserre, a physicist at France’s Alternative Energies and Atomic Energy Commission, told AFP.

Einstein’s dream of a unified field theory accomplished?

During the latter part of the 20th century, string theory was put forward as a unifying theory of physics foundations. String theory has not, however, fulfilled expectations. That is why we are of the view that the scientific community needs to reconsider what comprises elementary forces and particles.

Since the early days of general relativity, leading physicists, like Albert Einstein and Erwin Schrödinger, have tried to unify the theory of gravitation and electromagnetism. Many attempts were made during the 20th century, including by Hermann Weyl.

Finally, it seems that we have found a unified framework to accommodate the theory of electricity and magnetism within a purely geometric theory. This means that electromagnetic and are both manifestations of ripples and curvatures in .

Scientists discover new way to keep quantum spins coherent longer

A new study shows that electron spins—tiny magnetic properties of atoms that can store information—can be protected from decohering (losing their quantum state) much more effectively than previously thought, simply by applying low magnetic fields.

Normally, these spins quickly lose coherence when they interact with other particles or absorb certain types of light, which limits their usefulness in technologies like or atomic clocks. But the researchers discovered that even interactions that directly relax or disrupt the spin can be significantly suppressed using weak magnetic fields.

This finding expands our understanding of how to control and opens new possibilities for developing more stable and precise quantum devices.

Quantum Rain Falls: Ultracold Atoms Unleash Liquid Secrets

In a groundbreaking experiment, physicists observed a classic liquid phenomenon—capillary instability—in a quantum gas for the first time. By cooling a mix of potassium and rubidium atoms near absolute zero, researchers created tiny self-bound droplets that behave like liquid despite remaining in

Pinning Down a Ghost Particle: Neutrino Mass Measured with Unprecedented Precision

Scientists from the KATRIN experiment have achieved the most precise upper limit ever recorded for the mass of the mysterious neutrino – clocking in at less than 0.45 electron volts.

This breakthrough not only tightens the constraints on one of the universe’s most elusive particles but also challenges and extends the boundaries of the Standard Model of physics.

Breaking new ground in neutrino mass measurement.