Toggle light / dark theme

The two tetraquarks, Tacs0 (2900)++ and Tacs0 (2900)0, are observed in joint analysis of the B0→ D0Ds+π and B+→DDs+ π+ decays. The new tetraquarks are observed with masses around 2.9 GeV in both the Ds+π+ and Ds+π mass spectra. The former corresponds to the first observation of a doubly charged open-charm tetraquark with minimal quark content csud and the latter is a neutral tetraquark composed of csud quarks. The Ds+π+ and Ds+π mass spectra in the top images above indicate that the sum of contributions from conventional resonances (particles) cannot explain experimental distribution around the mass of 2.9 GeV. On the other hand, the experimental distributions are well understood when the contributions of the two new teraquarks are included in the analysis as shown in the two bottom images above. The mass and the width are determined to be 2.908±0.011±0.02 GeV and 0.136±0.023±0.011 GeV, respectively. The quantum numbers are determined to be JP=0+. In the language of particle physics the two tetraquarks are isospin partners.

In the conventional quark model, strongly interacting particles known as hadrons are formed either from quark-antiquark pairs (mesons) or three quarks (baryons). Particles which cannot be classified within this scheme are referred to as exotic hadrons. In their fundamental 1964 papers [1] and [2], in which they proposed the quark model, Murray Gell-Mann and George Zweig mentioned the possibility of adding a quark-antiquark pair to a minimal meson or baryon quark configuration. It took 50 years, however, for physicists to obtain unambiguous experimental evidence of the existence of these exotic hadrons. In April 2014 the LHCb collaboration published measurements that demonstrated that the Z(4430) particle, first observed by the Belle collaboration, is composed of four quarks (ccdu).

Physicists observed a strange new type of behaviour in a magnetic material when it’s heated up. The magnetic spins ‘freeze’ into a static pattern when the temperature rises, a phenomenon that normally occurs when the temperature decreases. They publish their findings in Nature Physics on July 4th.

The researchers discovered the phenomenon in the material neodymium, an element that they described several years ago as a ‘self-induced spin glass’. Spin glasses are typically alloys where iron atoms for example are randomly mixed into a grid of copper atoms. Each iron atom behaves like a small magnet, or a spin. These randomly placed spins point in all kinds of directions.

Unlike conventional spin glasses, where there is random mixing of magnetic materials, neodymium is an element and without significant amounts of any other material, shows glassy behavior in its crystalline form. The spins form patterns that whirl like a helix, and this whirling is random and constantly changes.

Now, as the Large Hadron Collider (LHC) – the monster proton smasher at the European particle laboratory, Cern – gears up to start its third period of data collection on Tuesday, experts are hoping to unpick further secrets of the fundamental building blocks of the universe.

Bortoletto, now head of particle physics at the University of Oxford and part of the team that discovered the Higgs boson, said her main memory of the events a decade ago was the moment two weeks before the announcement when the researchers unblinded their analysis of the data and saw unambiguous signs of the boson.

“I still, thinking [about] that moment, get the butterflies in my stomach,” she said. “It was unbelievable. It’s really a unique moment in the life of the scientist.”

Visit our sponsor, Brilliant: https://brilliant.org/IsaacArthur/
We continue our discussion of the Boltzmann Brain — a hypothetical randomly assembled mind rather than an evolved one — by looking at the Anthropic Principle and the Fine-Tuned Universe Theory, alternative ways of viewing the probability of our existence than the classic Copernican Principle.
Make sure to catch Part 1 of the discussion at Up an Atom:

Visit our Website: http://www.isaacarthur.net.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
SFIA Merchandise available: https://www.signil.com/sfia/

Social Media:
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/boltzmann-brains.

A mere day after the 10th anniversary of the discovery of the Higgs boson celebrations at CERN, the LHC will make the promise of a bright future for particle physics a reality, breaking a new energy world record of 13.6 trillion electron volts (13.6 TeV) in its first stable-beam collisions. These collisions will mark the start of data taking for the new physics season, called Run 3.

The launch of the LHC Run 3 will be streamed live on CERN’s social media channels and by high-quality Eurovision satellite link on 5 July starting at 4 p.m. Live commentary in five languages (English, French, German, Italian and Spanish) from the CERN Control Centre will walk you through the operation stages that take proton beams from their injection into the LHC to collision points. A live Q&A session with experts from the accelerators and experiments will conclude the live stream.

For those on site at CERN, the live will be broadcast on the screens in the three CERN restaurants with English subtitles. If you need to take an afternoon coffee break, think 4 p.m!

Do supermassive black holes have friends? The nature of galaxy formation suggests that the answer is yes, and in fact, pairs of supermassive black holes should be common in the universe.

I am an astrophysicist and am interested in a wide range of theoretical problems in astrophysics, from the formation of the very first galaxies to the gravitational interactions of black holes, stars and even planets. Black holes are intriguing systems, and supermassive black holes and the dense stellar environments that surround them represent one of the most extreme places in our universe.

The supermassive black hole that lurks at the center of our galaxy, called Sgr A*, has a mass of about 4 million times that of our Sun. A black hole is a place in space where gravity is so strong that neither particles or light can escape from it. Surrounding Sgr A* is a dense cluster of stars. Precise measurements of the orbits of these stars allowed astronomers to confirm the existence of this supermassive black hole and to measure its mass. For more than 20 years, scientists have been monitoring the orbits of these stars around the supermassive black hole. Based on what we’ve seen, my colleagues and I show that if there is a friend there, it might be a second black hole nearby that is at least 100,000 times the mass of the Sun.

A new study from the University of Cambridge reveals that electrons can simultaneously possess different energy levels.


Electrons, one of the most fundamental components of our universe, still hold a few secrets that puzzle modern scientists. Since the 1920s, physicists have worked to try and unravel the workings of these negatively charged particles, and how they behave in different situations. Now, research conducted at the University of Cambridge has shed new light on a pair of key factors–the spins and charges of electrons–revealing even more about their unique behavior.

Background: Spin and Charge

In the 1920s, scientists conducted several experiments that revealed electrons possess multiple spins. One of these, the Stern-Gerlach experiment, involved a beam of silver atoms directed at an uneven magnetic field. The magnetic field split the beam in two, revealing two different spins for the electron.