Toggle light / dark theme

Thomas Jefferson National Laboratory experiments hone in on a never-before-measured region of strong force coupling, a quantity that supports theories accounting for 99% of the ordinary mass in the universe.

Much fanfare was made about the Higgs boson when this elusive particle was discovered in 2012. Although it was touted as giving ordinary matter mass, interactions with the Higgs field only generate about 1% of ordinary mass. The other 99% comes from phenomena associated with the strong nuclear force, the fundamental force that binds smaller particles called quarks into larger particles called protons and neutrons that comprise the nucleus of the atoms of ordinary matter.

The Strong Nuclear Force (often referred to as the strong force) is one of the four basic forces in nature. The others are gravity, the electromagnetic force, and the weak nuclear force. As its name implies, it is the strongest of the four. However, it also has the shortest range, which means that particles must be extremely close before its effects are felt.

But the dark matter hypothesis isn’t perfect. Computer simulations of the growth of galaxies suggest that dark-matter-dominated galaxies should have incredibly high densities in their centers. Observations of real galaxies do show higher densities in their cores, but not nearly enough as those simulations predicted. Also, simulations of dark matter evolving in the universe predict that every galaxy should have hundreds of smaller satellites, while observations consistently come up short.

Given that the dark matter hypothesis isn’t perfect — and that we have no direct evidence for the existence of any candidate particles — it’s worth exploring other options.

One such option was introduced back in the 1970s alongside the original dark matter idea, when astronomer Vera Rubin first discovered the problem of stars moving too quickly inside galaxies. But instead of adding a new ingredient to the universe, the alternative changes the recipe by altering how gravity works at galactic scales. The original idea is called MOND, for “modified Newtonian dynamics,” but the name also applies to the general family of theories descended from that original concept.

“Pamela” is an uncrewed surface vehicle (USV) developed as an entrepreneurial idea at the Norwegian University of Science and Technology (NTNU) for sampling a variety of surface water particles, from microplastic to plankton to salmon lice. The USV is a joint effort by an interdisciplinary team—Andrea Faltynkova, a Ph.D. candidate at the Department of Biology, and Artur Zolich, a postdoc at the Department of Engineering Cybernetics.

Faltynkova studies microplastics in the ocean. Microplastics are bits of plastic smaller than 5 mm, which is roughly the size of the end of a pencil. While researchers know that microplastics can have negative effects on marine or freshwater organisms, there’s less known about how they affect human health. But studying microplastics is a challenge because of the nature of the substance itself, she says.

“Microplastics are so heterogeneous. It’s a very large, diverse group of particles. Not only that but they are very unevenly distributed. Microplastic is not like other dissolved pollutants that can be detected even in small quantities of water or soil. If you go and you take a liter from the sea, and there’s no plastic in it, can you conclude that there is no plastic in the sea?” she asked.

In the two decades since short-baseline neutrino anomalies were first discovered, scientists have come up with several guesses about what might cause discrepancies.


Of all the known elementary particles, neutrinos probably give physicists the most headaches.

These tiny fundamental bits of matter are the second most common particle in the universe yet are anything but ordinary. Since their discovery, they have taunted scientists with bizarre behaviors, some of which physicists have yet to comprehend.

One source of confusion has showed up in the results from short-distance neutrino experiments, in which neutrinos are measured after traveling somewhere between a few meters and a kilometer. When scientists measure neutrinos in these experiments, the results don’t always match their predictions. Sometimes there are too many of certain types of neutrinos, while in others there are too few.

* At Long Last, Mathematical Proof That Black Holes Are Stable * Who Gets to Work in the Digital Economy? * Mice produce rat sperm with technique that could help conservation.

* Quantum computer can simulate infinitely many chaotic particles * Radar / AI & ML: Scaling False Peaks * Cyber security for the human world | George Loukas | TEDx.

* Can Airbnb Outperform a Potential Recession? | WSJ * San Diego joins other cities in restricting cops’ use of surveillance technology * Blue Origin launches crew of 6 to suborbital space, nails landings.

The electrification of heating systems could play a significant role in building decarbonization. Heat pumps are emerging as a solution.


Iranian scientists have demonstrated a multi-layer silicon nanoparticle (SNP) solar cell based on nanoparticles that are densely stacked inside a dielectric medium. They considered different SNP structures and configurations to tailor these particles as a p–n junction cell.