Toggle light / dark theme

Particle emission ratios offer new window into evolution of matter in the early universe

Researchers from the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS) have proposed a key indicator that may reveal the emergence of quark-gluon plasma (QGP) by analyzing particle “fingerprints” generated in heavy-ion collisions.

Published in Physics Letters B, the study provides a new perspective for exploring the evolution of matter in the .

About 13.8 billion years ago, within a millionth of a second after the Big Bang, the universe existed in an ultra-hot and dense state. Instead of protons and neutrons, the fundamental building blocks of matter were free quarks and gluons—a unique state known as QGP. As the universe expanded and cooled, the QGP gradually condensed into the we recognize today.

Quantum Leap: Scientists Slash Atom Superposition Time by 10,000x

Working with the Quantum Statistical Physics (PQS) group, Dengis developed a protocol for rapidly generating NOON states. “These states, which look like miniature versions of Schrödinger’s famous cat, are quantum superpositions,” he explains. “They are of major interest for technologies such as ultra-precise quantum sensors or quantum computers.”

The obstacle of time

The main challenge? Manufacturing these states normally takes far too long. We’re talking tens of minutes or more, which often exceeds the lifetime of the experiment. The cause? An energy bottleneck, a “sharp bend” in the system’s evolution that forces it to slow down.

Asymmetric molecular interactions may hold the secret to living matter

Asymmetric interactions between molecules may serve as a stabilizing factor for biological systems. A new model by researchers in the Department of Living Matter Physics at the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) reveals the regulatory role of non-reciprocity.

The scientists aim to understand the physical principles based on which particles and molecules are able to form living beings, and eventually, organisms. The work is published in the journal Physical Review Letters.

Most organizations, including companies, societies, or nations, function best when each member carries out their assigned role. Moreover, this efficiency often relies on spatial organization, which arose due to rules or emerged naturally via learning and . At the , cells operate in a similar way, with different components handling .

Two AIs Discuss: The Construct of Science, a Metaphysical Inquiry!

“Metaphysical Experiments: Physics and the Invention of the Universe” by Bjørn Ekeberg Book Link: https://amzn.to/4imNNk5

“Metaphysical Experiments, Physics and the Invention of the Universe,” explores the intricate relationship between physics and metaphysics, arguing that fundamental metaphysical assumptions profoundly shape scientific inquiry, particularly in cosmology. The author examines historical developments from Galileo and Newton to modern cosmology and particle physics, highlighting how theoretical frameworks and experimental practices are intertwined with philosophical commitments about the nature of reality. The text critiques the uncritical acceptance of mathematical universality in contemporary physics, suggesting that cosmology’s reliance on hypological and metalogical reasoning reveals a deep-seated faith rather than pure empirical validation. Ultimately, the book questions the limits and implications of a science that strives for universal mathematical truth while potentially overlooking its own inherent complexities and metaphysical underpinnings. Chapter summaries:
- Cosmology in the Cave: This chapter examines the Large Hadron Collider (LHC) in Geneva to explore the metaphysics involved in the pursuit of a “Theory of Everything” linking subatomic physics to cosmology.
- Of God and Nature: This chapter delves into the seventeenth century to analyze the invention of the universe as a concept alongside the first telescope, considering the roles of Galileo, Descartes, and Spinoza.
- Probability and Proliferation: This chapter investigates the nineteenth-century shift in physics with the rise of probabilistic reasoning and the scientific invention of the particle, focusing on figures like Maxwell and Planck.
- Metaphysics with a Big Bang: This chapter discusses the twentieth-century emergence of scientific cosmology and the big bang theory, shaped by large-scale science projects and the ideas of Einstein and Hawking.
- Conclusion: This final section questions the significance of large-scale experiments like the JWST as metaphysical explorations and reflects on our contemporary scientific relationship with the cosmos.

#Physics.
#Cosmology.
#Universe.
#Science.
#Metaphysics.
#PhilosophyofScience.
#JWST
#LHC
#BigBangTheory.
#DarkMatter.
#DarkEnergy.
#SpaceTelescope.
#ParticlePhysics.
#HistoryofPhysics.
#ScientificInquiry #scienceandreligion #meaningoflife #consciousness #universe #god #spirituality #faith #reason #creationtheory #finetuninguniverse #astrophysics #quantumphysics #intelligentdesign #cosmicconsciousness #reality #Consciousness #QuantumPhysics #Universe #Nonlocality #QuantumEntanglement #CosmicInformation #ScienceOfMind #NatureOfReality #Spirit #BigLibraryHypothesis #NLSETI #QuantumBrain #Multiverse #InformationTheory #ExtrasensoryPerception #SciencePhilosophy #deepdive #skeptic #podcast #synopsis #books #bookreview #ai #artificialintelligence #booktube #aigenerated #history #alternativehistory #aideepdive #ancientmysteries #hiddenhistory #futurism #videoessay

Scientists finally confirm vitamin B1 hypothesis from 1958

Chemists have confirmed a 67-year-old theory about vitamin B1 by stabilizing a reactive molecule in water—a feat long thought impossible. The discovery not only solves a biochemical mystery, but also opens the door to greener, more efficient ways of making pharmaceuticals.

The molecule in question is a carbene, a type of carbon atom with only six valence electrons. Generally, carbon is stable with eight electrons around it. With only six electrons, it is chemically unstable and highly reactive. In water, it usually decomposes instantly. But for decades, scientists have suspected that vitamin B1, also known as thiamine, may form a carbene-like structure in our cells to carry out vital reactions in the body.

Now, for the first time, researchers have not only generated a stable carbene in water, they’ve also isolated it, sealed it in a tube, and watched it stay intact for months. This discovery is documented in a paper published last week in Science Advances.

Engineering a hydrogen-bonding microenvironment to boost CO₂ electroreduction

Catalytic conversion of waste CO2 into value-added fuels and chemicals offers unprecedented opportunities for both environmental protection and economic development. Electrocatalytic CO2 reduction reaction (CO2RR) has garnered significant attention for its ability to efficiently convert CO2 into clean chemical energy under mild conditions. However, the relatively high energy barrier for *COOH intermediate formation often becomes the determining step in CO2RR, significantly limiting reaction efficiency.

Inspired by , a team led by Prof. Jiang Hai-Long and Prof. Jiao Long from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) developed a novel strategy to stabilize *COOH intermediate and enhance electrochemical CO2 reduction by constructing and modulating the hydrogen-bonding microenvironment around catalytic sites. Their work is published in the Proceedings of the National Academy of Sciences.

In this work, the team co-grafted catalytically active Co(salen) units and proximal pyridyl-substituted alkyl (X-PyCn) onto Hf-based MOF nanosheets (MOFNs) via a post decoration route, affording Co&X-PyCn/MOFNs (X = o, m or p representing the ortho-, meta-, or para-position of pyridine N relative to alkyl chain; n = 1 or 3 representing the carbon atom number of alkyl chains) materials.

Microplastics still slip through wastewater treatment plants, carrying pollutants and threatening long-term health

Despite advances in wastewater treatment, tiny plastic particles called microplastics are still slipping through, posing potential health and environmental hazards, according to new research from The University of Texas at Arlington.

Because plastic is inexpensive to produce yet lightweight and sturdy, manufacturers have found it ideal for use in nearly every consumer good, from food and beverage packaging to clothing and beauty products. The downside is that when a plastic item reaches the end of its useful life, it never truly disappears. Instead, it breaks down into smaller and smaller pieces called microplastics—particles five millimeters or less, about the width of a pencil eraser—that end up in our soil and water.

“What our systematic literature review found is that while most facilities significantly reduce microplastics loads, complete removal remains unattainable with current technologies,” said Un-Jung Kim, assistant professor of Earth and environmental sciences at UT Arlington and senior author of the study published in Science of the Total Environment.

Quantum Sensors That Hear Magnetic Whispers — And Push Physics to Its Limit

Quantum magnetometers can detect incredibly small changes in magnetic fields by tapping into the strange and powerful features of quantum physics. These devices rely on the discrete nature and coherence of quantum particles—behaviors that give them a major edge over classical sensors. But how far can their sensitivity go? And what actually makes a magnetometer “quantum?”

A new study explores the theoretical boundaries of these devices, comparing multiple methods for defining their limits. The findings shed light not only on performance but also on what truly separates quantum sensors from their classical counterparts.

Quantum Magnetometers and Ultra-High Sensitivity.