Toggle light / dark theme

A research team led by Wang Guozhong from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has developed a novel method to precisely control the size of nickel (Ni) particles in catalysts, improving their performance in hydrogenation reactions.

The findings, published in Advanced Functional Materials, offer new insights into catalyst design for .

Catalysts play a crucial role in accelerating without being consumed, and the size of metal particles within them is a key factor influencing their performance.

A new study published in Scientific Reports simulates particle creation in an expanding universe using IBM quantum computers, demonstrating the digital quantum simulation of quantum field theory for curved spacetime (QFTCS).

While attempts to create a complete quantum theory of gravity have been unsuccessful, there is another approach to exploring and explaining cosmological events.

QFTCS maintains spacetime as a classical background described by general relativity, while treating the matter and force fields within it quantum mechanically. This allows physicists to study in “curved spacetime” without needing a complete theory of quantum gravity.

Phase transitions, shifts between different states of matter, are widely explored physical phenomena. So far, these transitions have primarily been studied in three-dimensional (3D) and two-dimensional (2D) systems, yet theories suggest that they could also occur in some one-dimensional (1D) systems.

Researchers at the Duke Quantum Center and the University of Maryland recently reported the first observation of a finite-energy phase transition in a 1D chain of atoms simulated on a . Their paper, published in Nature Physics, introduces a promising approach to realizing finite-energy states in quantum simulation platforms, which opens new possibilities for the study of phase transitions in 1D systems.

The recent study is a that combined the work of theoretical physicists at the University of Maryland with that of at the Duke Quantum Center, where the was placed and where the experiments were carried out.

When humans kick swim through water, vortices form around their legs, generating the force that propels them forward. However, the mechanisms underlying variations in the structure of these vortices with swimming speed remain unclear.

In a new study published in Experiments in Fluids, researchers analyzed swimmer movement using an optical motion capture system and investigated vortex structure changes with varying speeds. They employed to visualize water flow dynamics.

Their results revealed that during underwater undulatory swimming, the vortex structure in the down-kick-to-up-kick transition phase changed as swimming speed increased. Specifically, with rising swimming speed, the direction of the jet flow between the two around the foot shifted to a more vertically downward orientation, a shift hypothesized to enhance forward propulsion during up-kicking.

AI transformational impact is well under way. But as AI technologies develop, so too does their power consumption. Further advancements will require AI chips that can process AI calculations with high energy efficiency. This is where spintronic devices enter the equation. Their integrated memory and computing capabilities mimic the human brain, and they can serve as a building block for lower-power AI chips.

Now, researchers at Tohoku University, National Institute for Materials Science, and Japan Atomic Energy Agency have developed a new spintronic device that allows for the electrical mutual control of non-collinear antiferromagnets and ferromagnets. This means the device can switch magnetic states efficiently, storing and processing information with less energy—just like a brain-like AI chip.

The breakthrough can potentially revolutionize AI hardware via high efficiency and low energy costs. The team published their results in Nature Communications on February 5, 2025.

What began as a demonstration of the complexity of fluid systems evolved into an art piece in the American Physical Society’s Gallery of Fluid Motion and ultimately became a puzzle that researchers have now solved.

Their new study is published in the journal Physical Review Letters

<em> Physical Review Letters (PRL)</em> is a prestigious peer-reviewed scientific journal published by the American Physical Society. Launched in 1958, it is renowned for its swift publication of short reports on significant fundamental research in all fields of physics. PRL serves as a venue for researchers to quickly share groundbreaking and innovative findings that can potentially shift or enhance understanding in areas such as particle physics, quantum mechanics, relativity, and condensed matter physics. The journal is highly regarded in the scientific community for its rigorous peer review process and its focus on high-impact papers that often provide foundational insights within the field of physics.

A large team of researchers working on the Alpha Magnetic Spectrometer Collaboration, which has been analyzing eleven years’ worth of data from the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station, has found trends in the number of particles moving around in the heliosphere and in the way they interact with one another.

The team has published two papers in the journal Physical Review Letters; one describing trends they found surrounding antiproton and elementary particle behavior over a single and the other covering solar modulation of cosmic nuclei behavior, also over a single solar cycle.

Prior research has shown that the sun follows a cycle that repeats itself every 11 years. The AMS has been running for more than 11 years, but the researchers working on both efforts focused on conditions during just one cycle. They wanted to know how the sun impacted energy particles in the and beyond.

Can copper be turned into gold? For centuries, alchemists pursued this dream, unaware that such a transformation requires a nuclear reaction. In contrast, graphite—the material found in pencil tips—and diamond are both composed entirely of carbon atoms; the key difference lies in how these atoms are arranged. Converting graphite into diamond requires extreme temperatures and pressures to break and reform chemical bonds, making the process impractical.

A more feasible transformation, according to Prof. Moshe Ben Shalom, head of the Quantum Layered Matter Group at Tel Aviv University, involves reconfiguring the atomic layers of graphite by shifting them against relatively weak van der Waals forces. This study, led by Prof. Ben Shalom and Ph.D. students Maayan Vizner Stern and Simon Salleh Atri, all from the Raymond & Beverly Sackler School of Physics & Astronomy at Tel Aviv University, was recently published in the journal Nature Review Physics.

While this method won’t create diamonds, if the switching process is fast and efficient enough, it could serve as a tiny electronic memory unit. In this case, the value of these newly engineered “polytype” materials could surpass that of both diamonds and gold.

Quantum spin liquids (QSLs) are fascinating and mysterious states of matter that have intrigued scientists for decades. First proposed by Nobel laureate Philip Anderson in the 1970s, these materials break the conventional rules of magnetism by never settling into a stable magnetic state, even at temperatures close to absolute zero.

Instead, the spins of the atoms within them remain constantly fluctuating and entangled, creating a kind of magnetic “liquid.” This unusual behavior is driven by a phenomenon called magnetic frustration, where competing forces prevent the system from reaching a single, ordered configuration.

QSLs are notoriously difficult to study. Unlike ordinary magnetic materials, they don’t show the usual signs of magnetic transitions, which makes it hard to detect and understand them using traditional techniques. As a result, their behavior has remained an elusive puzzle for researchers.