Menu

Blog

Archive for the ‘particle physics’ category: Page 201

Apr 26, 2022

The Large Hadron Collider Is Back and Ready to Hunt for Dark Matter

Posted by in categories: cosmology, particle physics

Are you ready?


In the control room at CERN (The European Center for Nuclear Research) is a row of empty champagne bottles. Scientists popped open each one to celebrate a successful landmark, like the discovery of the Higgs boson particle, the long-elusive particle that gives all other subatomic particles their mass.

⚛️ Science explains the world around us. We’ll help you unravel its mysteries.

Continue reading “The Large Hadron Collider Is Back and Ready to Hunt for Dark Matter” »

Apr 26, 2022

Chip startups using light instead of wires gaining speed and investments

Posted by in categories: computing, engineering, particle physics

April 26 (Reuters) — Computers using light rather than electric currents for processing, only years ago seen as research projects, are gaining traction and startups that have solved the engineering challenge of using photons in chips are getting big funding.

In the latest example, Ayar Labs, a startup developing this technology called silicon photonics, said on Tuesday it had raised $130 million from investors including chip giant Nvidia Corp (NVDA.O).

While the transistor-based silicon chip has increased computing power exponentially over past decades as transistors have reached the width of several atoms, shrinking them further is challenging. Not only is it hard to make something so miniscule, but as they get smaller, signals can bleed between them.

Apr 25, 2022

After 3 years offline, the Large Hadron Collider immediately sets a world record

Posted by in category: particle physics

The Large Hadron Collider. xenotar/iStock

Whoosh!

After three years of maintenance and upgrades, the Large Hadron Collider — one of the most powerful scientific instruments ever built — has whizzed past its own record. In preparation for its third major run of experiments, the particle accelerator has created the most energetic beams of protons ever made by humans. The particles went racing around the 17-mile (27 km) tunnel near Geneva, Switzerland, with an energy of 6.8 trillion electronvolts (TeV).

Apr 25, 2022

A Decade of Science and Trillions of Collisions Show the W Boson Is More Massive Than Expected — A Physicist Explains What It Means

Posted by in categories: particle physics, science

“You can do it quickly, you can do it cheaply, or you can do it right. We did it right.” These were some of David Toback opening remarks when the leader of Fermilab’s Collider Detector unveiled the results of a decade-long experiment to measure the mass of a particle known as the W boson.

I am a high energy particle physicist, and I am part of the team of hundreds of scientists that built and ran the Collider Detector at Fermilab in Illinois – known as CDF.

After trillions of collisions and years of data collection and number crunching, the CDF team found that the W boson has slightly more mass than expected. Though the discrepancy is tiny, the results, described in a paper published in the journal Science on April 7, 2022, have electrified the particle physics world. If the measurement is indeed correct, it is yet another strong signal that there are missing pieces to the physics puzzle of how the universe works.

Apr 25, 2022

What Is a Neutrino? The Missing Key to Modern Physics Could Be a Ghost Particle

Posted by in category: particle physics

Explaining one of astrophysics’ most puzzling particles.


The enigmatic saga of one of astrophysics’ most wanted particles.

Apr 25, 2022

The Arrow of Time in Causal Networks

Posted by in categories: cosmology, particle physics, quantum physics

April, 2022


Sean Carroll (Caltech and Santa Fe Institute)
https://simons.berkeley.edu/events/causality-program-externa…-institute.
Causality.

Continue reading “The Arrow of Time in Causal Networks” »

Apr 25, 2022

Muons spill secrets about Earth’s hidden structures

Posted by in category: particle physics

Tracking travel patterns of subatomic particles called muons helps reveal the inner worlds of pyramids, volcanoes and more.

Apr 24, 2022

Atomic Layer Etching Could Lead to Ever-More Powerful Microchips and Supercomputers

Posted by in categories: mobile phones, particle physics, supercomputing

Over the course of almost 60 years, the information age has given the world the internet, smart phones, and lightning-fast computers. This has been made possible by about doubling the number of transistors that can be packed onto a computer chip every two years, resulting in billions of atomic-scale transistors that can fit on a fingernail-sized device. Even individual atoms may be observed and counted within such “atomic scale” lengths.

Physical limit

With this doubling reaching its physical limit, the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has joined industry efforts to prolong the process and find new techniques to make ever-more powerful, efficient, and cost-effective chips. In the first PPPL research conducted under a Cooperative Research and Development Agreement (CRADA) with Lam Research Corp., a global producer of chip-making equipment, laboratory scientists properly predicted a fundamental phase in atomic-scale chip production through the use of modeling.

Apr 24, 2022

ATLAS strengthens its search for supersymmetry

Posted by in categories: cosmology, particle physics, robotics/AI

Where is all the new physics? In the decade since the Higgs boson’s discovery, there have been no statistically significant hints of new particles in data from the Large Hadron Collider (LHC). Could they be sneaking past the standard searches? At the recent Rencontres de Moriond conference, the ATLAS collaboration at the LHC presented several results of novel types of searches for particles predicted by supersymmetry.

Supersymmetry, or SUSY for short, is a promising theory that gives each elementary particle a “superpartner”, thus solving several problems in the current Standard Model of particle physics and even providing a possible candidate for dark matter. ATLAS’s new searches targeted charginos and neutralinos – the heavy superpartners of force-carrying particles in the Standard Model – and sleptons – the superpartners of Standard Model matter particles called leptons. If produced at the LHC, these particles would each transform, or “decay”, into Standard Model particles and the lightest neutralino, which does not further decay and is taken to be the dark-matter candidate.

ATLAS’s newest search for charginos and sleptons studied a particle-mass region previously unexplored due to a challenging background of Standard Model processes that mimics the signals from the sought-after particles. The ATLAS researchers designed dedicated searches for each of these SUSY particle types, using all the data recorded from Run 2 of the LHC and looking at the particles’ decays into two charged leptons (electrons or muons) and “missing energy” attributed to neutralinos. They used new methods to extract the putative signals from the background, including machine-learning techniques and “data-driven” approaches.

Apr 23, 2022

Beyond the standard model? Here’s what a heavy W Boson means for the future of physics

Posted by in categories: futurism, particle physics