Menu

Blog

Archive for the ‘particle physics’ category: Page 117

Jun 27, 2023

Taking Quantum Security to New Heights: A New Secure and Fast Source-DI QRNG Protocol

Posted by in categories: particle physics, quantum physics, security

The use of single-photon.

A photon is a particle of light. It is the basic unit of light and other electromagnetic radiation, and is responsible for the electromagnetic force, one of the four fundamental forces of nature. Photons have no mass, but they do have energy and momentum. They travel at the speed of light in a vacuum, and can have different wavelengths, which correspond to different colors of light. Photons can also have different energies, which correspond to different frequencies of light.

Jun 25, 2023

Physicists uncover a breakthrough material in bosonic matter

Posted by in categories: materials, particle physics

Overlapping lattices and innovative techniques have unlocked the secrets of bosonic materials, opening doors to unprecedented possibilities in condensed matter physics.

Physicists at UC Santa Barbara have unlocked the secrets of an extraordinary material made of bosons. Traditionally, the scientific community has focused on understanding the behavior of fermions, the subatomic particles responsible for the stability and interaction of matter. However, this recent breakthrough explores the unique properties of bosons, shedding light on a less explored realm of particle physics.

By overlapping lattices of tungsten diselenide and tungsten disulfide in a twisted configuration known as a moiré… More.

Continue reading “Physicists uncover a breakthrough material in bosonic matter” »

Jun 25, 2023

Quantumness of water molecules might explain unexpected behaviors

Posted by in categories: climatology, computing, particle physics, quantum physics

Year 2013 Basically they found out water is quantum which could then be turned into a water quantum computer.


Water is vital to life as we know it, but there is still a great deal unknown when it comes to correctly modeling its properties. Now researchers have discovered room-temperature water may be even more bizarre than once suspected — quantum physics suggest its hydrogen atoms can travel surprisingly farther than before thought, report findings detailed in the Proceedings of the National Academy of Sciences.

Water is just made of two hydrogen atoms and an oxygen atom, but despite its apparent simplicity, liquid water displays a remarkable number of unusual properties, such as how it decreases in density upon freezing, and the existence of some 19 different forms of ice. Scientists traditionally ascribe water’s peculiar behavior to the hydrogen bond. Water is polar — partial electric charges separate within the molecule, leading to slightly positively charged hydrogen ends and a negatively charged oxygen middle. As such, the hydrogens in one water molecule can get attracted to the oxygen in another, a hydrogen bond that can help explain why water has such a high boiling point, for example.

All of water’s anomalies, together with its unquestionably vital role in climate and life on Earth, have led to intense research around the globe, but still much remains unknown about it. To shed light on water’s behavior, materials scientist Michele Ceriotti at the University of Oxford in England and his colleagues modeled how the atomic nuclei of water’s hydrogen might behave in a quantum way — that is, not like points as the above explanation of hydrogen bonding from classical physics would suggest, but as more delocalized, cloud-like objects.

Continue reading “Quantumness of water molecules might explain unexpected behaviors” »

Jun 24, 2023

MIT’s Nematic Leap: Physicists Discover a New Switch for Superconductivity

Posted by in categories: materials, particle physics

MIT researchers have found a new mechanism by which the superconductor iron selenide transitions into a superconducting state. Unlike other iron-based superconductors, iron selenide’s transition involves a collective shift in atoms’ orbital energy, not atomic spins. This breakthrough opens up new possibilities for discovering unconventional superconductors.

Under certain conditions — usually exceedingly cold ones — some materials shift their structure to unlock new, superconducting behavior. This structural shift is known as a “nematic transition,” and physicists suspect that it offers a new way to drive materials into a superconducting state where electrons can flow entirely friction-free.

But what exactly drives this transition in the first place? The answer could help scientists improve existing superconductors and discover new ones.

Jun 24, 2023

Physicists Discover a New State of Matter Hidden in The Quantum World

Posted by in categories: particle physics, quantum physics, space

You’re familiar with the states of matter we encounter daily – such as solid, liquid, and gas – but in more exotic and extreme conditions, new states can appear, and scientists from the US and China just found one.

They’re calling it the chiral bose-liquid state, and as with every new arrangement of particles we discover, it can tell us more about the fabric and the mechanisms of the Universe around us – and in particular, at the super-small quantum scale.

States of matter describe how particles can interact with one another, giving rise to structures and various ways of behaving. Lock atoms in place, and you have a solid. Allow them to flow, you have a liquid or gas. Force charged partnerships apart, you have a plasma.

Jun 24, 2023

University of Washington team detects atomic ‘breathing’ for quantum computing breakthrough

Posted by in categories: computing, particle physics, quantum physics

Most of us don’t think of atoms as having their own unique vibrations, but they do. In fact, it’s a feature so fundamental to nature’s building blocks that a team of University of Washington researchers recently observed and used this phenomenon in their research study. By studying the light atoms emitted when stimulated by a laser, they were able to detect vibrations sometimes referred to as atomic “breathing.”

The result is a breakthrough that may one day allow us to build better tools for many kinds of quantum technologies.

Led by Mo Li, a professor of photonics and nano devices in both the UW Department of Electrical and Computer Engineering and the UW Physics Department, the researchers set out to build a better quantum emitter, or QE, one that could be incorporated into optical circuits.

Jun 23, 2023

Flow of water on a carbon surface is governed by quantum friction, says study

Posted by in categories: computing, nanotechnology, particle physics, quantum physics, sustainability

Water and carbon make a quantum couple: the flow of water on a carbon surface is governed by an unusual phenomenon dubbed quantum friction. A new work published in Nature Nanotechnology experimentally demonstrates this phenomenon—which was predicted in a previous theoretical study—at the interface between liquid water and graphene, a single layer of carbon atoms. Advanced ultrafast techniques were used to perform this study. These results could lead to applications in water purification and desalination processes and maybe even to liquid-based computers.

For the last 20 years, scientists have been puzzled by how water behaves near carbon surfaces. It may flow much faster than expected from conventional flow theories or form strange arrangements such as square ice. Now, an international team of researchers from the Max Plank Institute for Polymer Research of Mainz (Germany), the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain), and the University of Manchester (England), reports in the study published in Nature Nanotechnology on June 22, 2023, that water can interact directly with the carbon’s electrons—a quantum phenomenon that is very unusual in .

A liquid, such as water, is made up of that randomly move and constantly collide with each other. A solid, in contrast, is made of neatly arranged atoms that bathe in a cloud of electrons. The solid and the liquid worlds are assumed to interact only through collisions of the liquid molecules with the solid’s atoms—the liquid molecules do not “see” the solid’s electrons. Nevertheless, just over a year ago, a paradigm-shifting theoretical study proposed that at the water-carbon interface, the liquid’s molecules and the solid’s electrons push and pull on each other, slowing down the liquid flow: this new effect was called quantum friction. However, the theoretical proposal lacked experimental verification.

Jun 23, 2023

New device opens door to storing quantum information as sound waves

Posted by in categories: computing, particle physics, quantum physics

Quantum computing, just like traditional computing, needs a way to store the information it uses and processes. On the computer you’re using right now, information, whether it be photos of your dog, a reminder about a friend’s birthday, or the words you’re typing into browser’s address bar, must be stored somewhere. Quantum computing, being a new field, is still working out where and how to store quantum information.

In a paper published in the journal Nature Physics, Mohammad Mirhosseini, assistant professor of electrical engineering and applied physics, shows a new method his lab has developed for efficiently translating electrical quantum states into sound and vice versa. This type of translation may allow for storing prepared by future quantum computers, which are likely to made from electrical circuits.

This method makes use of what are known as , the sound equivalent of a light particle called a photon. (Remember that in quantum mechanics, all waves are particles and vice versa). The experiment investigates phonons for storing quantum information because it’s relatively easy to build small devices that can store these mechanical waves.

Jun 22, 2023

A Hint of Dark Matter Sends Physicists Looking to the Skies

Posted by in categories: cosmology, particle physics

After a search of neutron stars finds preliminary evidence for hypothetical dark matter particles called axions, astrophysicists are devising new ways to spot them.

Jun 22, 2023

Study reports first realization of a Laughlin state in ultracold atoms

Posted by in categories: particle physics, quantum physics

The discovery of the quantum Hall effects in the 1980s revealed the existence of novel states of matter called “Laughlin states,” in honor of the American Nobel prize winner who successfully characterized them theoretically. These exotic states specifically emerge in 2D materials, at very low temperature and in the presence of an extremely strong magnetic field.

In a Laughlin state, electrons form a peculiar liquid, where each electron dances around its congeners while avoiding them as much as possible. Exciting such a generates collective states that physicists associate with fictitious particles, whose properties drastically differ from : these “anyons” carry a fractional charge (a fraction of the elementary charge) and they surprisingly defy the standard classification of particles in terms of bosons or fermions.

For many years, physicists have explored the possibility of realizing Laughlin states in other types of systems than those offered by solid-state materials, in view of further analyzing their peculiar properties. However, the required ingredients (the 2D nature of the system, the intense magnetic field, the strong correlations among the particles) has proved extremely challenging.