Toggle light / dark theme

In 2022, the Physics Nobel prize was awarded for experimental work showing that the quantum world must break some of our fundamental intuitions about how the universe works.

Many look at those experiments and conclude that they challenge “locality”—the intuition that distant objects need a physical mediator to interact. And indeed, a mysterious connection between distant particles would be one way to explain these experimental results.

Others instead think the experiments challenge “realism”—the intuition that there’s an objective state of affairs underlying our experience. After all, the experiments are only difficult to explain if our measurements are thought to correspond to something real. Either way, many physicists agree about what’s been called “the death by experiment” of local realism.

But now, in a wild physics twist, MIT researchers have figured out that neutrons can actually stick to way bigger structures called quantum dots. Quantum dots are like teeny-tiny crystals made up of tens of thousands of atoms. The fact that a single neutron can cling to one is blowing scientists’ minds.

Their findings, published this week in ACS Nano by a team led by professors Ju Li and Paola Cappellaro, could lead to the development of new tools for studying the fundamental properties of materials, including those influenced by the strong nuclear force. This research also holds promise for the creation of entirely new types of quantum information processing devices.

David Kaplan has developed a lattice model for particles that are left-or right-handed, offering a firmer foundation for the theory of weak interactions.

David Kaplan is on a quest to straighten out chirality, or “handedness,” in particle physics. A theorist at the University of Washington, Seattle, Kaplan has been wrestling with chirality conundrums for over 30 years. The main problem he has been working on is how to place chiral particles, such as left-handed electrons or right-handed antineutrinos, on a discrete space-time, or “lattice.” That may sound like a minor concern, but without a solution to this problem the weak interaction—and by extension the standard model of particle physics—can’t be simulated on a computer beyond low-energy approximations. Attempts to develop a lattice theory for chiral particles have run into model-dooming inconsistencies. There’s even a well-known theorem that says the whole endeavor should be impossible.

Kaplan is unfazed. He has been a pioneer in formulating chirality’s place in particle physics. One of his main contributions has been to show that some of chirality’s problems can be solved in extra dimensions. Kaplan has now taken this extra-dimension strategy further, showing that reducing the boundaries, or edges, around the extra dimensions can help keep left-and right-handed particle states from mixing [1, 2]. With further work, he believes this breakthrough could finally make the lattice “safe” for chiral particles. Physics Magazine spoke to Kaplan about the issues surrounding chirality in particle physics.

Dielectric metasurfaces, known for their low loss and subwavelength scale, are revolutionizing optical systems by allowing multidimensional light modulation. Researchers have now innovated in this field by developing a liquid crystal-based dielectric metasurface that streamlines manufacturing and enhances device performance.

Dielectric metasurfaces represent one of the cutting-edge research and application directions in the current optical field. They not only possess the advantage of low loss but also enable the realization of device thicknesses at subwavelength scales. Moreover, they can freely modulate light in multiple dimensions such as amplitude, phase, and polarization. This capability, which traditional optics lacks, holds significant importance for the integration, miniaturization, and scaling of future optical systems. Consequently, dielectric metasurfaces have attracted increasing industrial attention.

In this study, Professor Daping Chu’s team at the University of Cambridge developed a novel liquid crystal-based tunable dielectric metasurface. By leveraging the dielectric metasurface’s inherent alignment effect on liquid crystals on top of its electrically controllable properties, the need for liquid crystal alignment layer materials and related processes is eliminated, thus saving device manufacturing time and costs. This has practical implications for devices such as liquid crystal on silicon (LCoS).

Self-assembled semiconductor quantum dots (QDs) represent a three-dimensional confined nanostructure with discrete energy levels, which are similar to atoms. They are capable of producing highly efficient and indistinguishable single photons on demand and are important for exploring fundamental quantum physics and various applications in quantum information technologies. Leveraging traditional semiconductor processes, this material system also offers a natural integration-compatible and scalable platform.

The traveling salesman problem is considered a prime example of a combinatorial optimization problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.

Quantum computers use so-called qubits, which are not either zero or one as in conventional logic circuits, but can take on any value in between. These qubits are realized by highly cooled atoms, ions, or superconducting circuits, and it is still physically very complex to build a quantum computer with many qubits. However, mathematical methods can already be used to explore what fault-tolerant quantum computers could achieve in the future.

“There are a lot of myths about it, and sometimes a certain amount of hot air and hype. But we have approached the issue rigorously, using mathematical methods, and delivered solid results on the subject. Above all, we have clarified in what sense there can be any advantages at all,” says Prof. Dr. Jens Eisert, who heads a joint research group at Freie Universität Berlin and Helmholtz-Zentrum Berlin.

The advanced civilization in my story have harnessed the power of many of the stars in their galaxy and using them for different purposes, one being Matrioska brains. Some of these super computers will be to run the AI in the real world as well as for other calculations, Others will be to run detailed virtual worlds. The earliest Simulations will be Computer simulated worlds with artifical life within but later the advanced species will try to create simulations to the subatomic level.

It has been stated that a Matrioshka brain with the full output of the sun can simulate 1 trillion to a quadrillion minds, how this translates to how much world/simulation space can exist and to what detail i am not sure. I believe our sun’s output per second is $3.86 \cdot 10^{26}$ W and our galaxies is $4\cdot 10^{58} \ W/s$, although with 400 billions stars in our galaxy I am not sure how of that energy is from other sources than the stars.

If we look past the uncertainty of subatomic partcles we have $10^{80}$ particles in a space of $10^{185}$ plank volumes in our observable universe, if we use time frames of $10^{-13}$ seconds this gives $10^{13}$ time frames per real second. With $10^{80}$ particles we can have $10^{160}$ interactions for a full simulation but a simulation where only the observed/ observable details needs to be simulated can run off much less computing.