Toggle light / dark theme

Nakamura, who was awarded the Nobel Prize for his pioneering work on the development of blue light-emitting diodes (LEDs), believes that his company can harness their semiconductor expertise to create a secure pathway for achieving nuclear fusion and transforming it into a commercially viable venture.

The precise details of the approach remain undisclosed as Blue Laser Fusion currently has a pending patent.

However, Nakamura is confident in the feasibility of constructing rapid-fire lasers and envisions the establishment of a one-gigawatt generating reactor in either Japan or the US by the end of the decade. Prior to that milestone, the company intends to construct a small-scale experimental plant in Japan before the conclusion of the next year, as reported by Nikkei.

Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the fusion plasma.

Plasma, the fourth state of matter, is a hot gas made of electrically charged particles. Scientists at the Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) are working on solutions to efficiently harness the power of fusion to offer a cleaner alternative to fossil fuels, often using devices called tokamaks, which confine plasma using magnetic fields.

“The purpose of these devices is to confine the energy,” said Dennis Boyle, a staff research physicist at PPPL. “If you had much better energy confinement, you could make the machines smaller and less expensive. That would make the whole thing a lot more practical, and cost-effective so that governments and industry want to invest more in it.”

New observations at the DIII-D National Fusion Facility offer vital insights into energetic ions in fusion plasmas, key for fusion power development and space plasma understanding, with implications for satellite technology.

In a burning plasma, maintaining confinement of fusion-produced energetic ions is essential to producing energy. These fusion plasmas host a wide array of electromagnetic waves that can push energetic ions out of the plasma. This reduces the heating of the plasma from fusion reaction products and ends the burning plasma state.

Recent measurements at the DIII-D National Fusion Facility provide the first direct observations of energetic ions moving through space and energy in a tokamak. Researchers combined these measurements with advanced computer models of electromagnetic waves and how they interact with energetic ions. The results provide an improved understanding of the interplay between plasma waves and energetic ions in fusion plasmas.

Large, low-background detectors using xenon as a target medium are widely used in fundamental physics, particularly in experiments searching for dark matter or studying rare decays of atomic nuclei. In these detectors, the weak interaction of a neutral particle—such as a neutrino—with a xenon-136 nucleus can transform it into a cesium-136 nucleus in a high-energy excited state.

The gamma rays emitted as the cesium-136 relaxes from this could allow scientists to separate rare signals from background radioactivity. This can enable new measurements of solar neutrinos and more powerful searches for certain models of dark matter. However, searching for these events has been difficult due to a lack of reliable nuclear data for cesium-136. Researchers need to know the properties of cesium-136’s , which have never been measured for this isotope.

This research, appearing in Physical Review Letters, provides direct determination of the relevant data by measuring from cesium-136 produced in at a . Importantly, this research reveals the existence of so-called “isomeric states”—excited states that exist for approximately 100ns before relaxing to the ground state.

They’re working on it.


A Chinese company has announced they’re planning to mass-produce tiny nuclear batteries that can last up to 50 years, possibly beating both a British and an American company who have tried to put those on the market for several years. What does that mean? Will we soon all power our phones with nuclear power? Let’s have a look.

🤓 Check out our new quiz app ➜ http://quizwithit.com/
💌 Support us on Donatebox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

Betavolt wants to create batteries that will last a lifetime by 2025.


A Chinese startup called Betavolt has cooked up this itty-bitty nuclear battery — about the size of a little coin — which they claim can crank out electricity for 50 years straight, with no charging pit stops needed.

As the company leaps from development to the pilot stage, they’re gearing up for full-scale production and a grand entrance into the market pretty soon.

How did they create it?

The Beijing-based company also claims that its nuclear battery is the world’s first to successfully miniaturize atomic energy, fitting 63 nuclear isotopes into a module smaller than a coin.

I want this.


A Chinese company called Betavolt Technology has started working on nuclear batteries, and if this turns into something that actually works, you can say goodbye to smartphone charging. Based on the information we have received, the company is working on batteries across several devices.

The nuclear batteries are able to hold a charge for 50 years. Yes, you have heard this right. If this technology ever sees the light of day and hits the mainstream, it is safe to say that our smartphone batteries will outlive many of us.

The company has talked about how they have pioneered the “miniaturization of atomic energy batteries.” Betavolt Technology managed to stuff 63 nuclear isotopes in a modular that is smaller than a coin. The model is called BV100, and it is capable of producing 100 microwatts of electricity, which should be more than enough when it comes to a smartphone.

Fusion’s success as a renewable energy depends on the creation of an industry to support it, and academia is vital to that industry’s development.

A new study suggests that universities have an essential role to fulfill in the continued growth and success of any modern high-tech industry, and especially the nascent fusion industry; however, the importance of that role is not reflected in the number of fusion-oriented faculty and educational channels currently available. Academia’s responsiveness to the birth of other modern scientific fields, such as aeronautics and nuclear fission, provides a template for the steps universities can take to enable a robust fusion industry.

Insights from Experts.