Menu

Blog

Archive for the ‘nuclear energy’ category: Page 29

Jan 20, 2023

Nuclear energy could help astronauts survive 336-hour-long lunar nights

Posted by in categories: nuclear energy, transportation

Crews caught in sun-free cycles will need to get creative with energy production.


When astronauts on the Artemis mission and beyond spend long periods in Lunar Night, they’ll need innovative forms of energy to power vehicles and research instruments.

Jan 20, 2023

The problems with Helion Energy — a response to Real Engineering

Posted by in categories: engineering, nuclear energy, particle physics

I still like Helion… but not for a power plant. Instead, this is an interesting route to a fusion drive.

This is also a very good channel. It is worth watching his other fusion videos first.

Continue reading “The problems with Helion Energy — a response to Real Engineering” »

Jan 19, 2023

New strategy uses ionic liquids to change laser colors with ease

Posted by in categories: chemistry, nuclear energy

Lasers are intense beams of colored light. Depending on their color and other properties, they can scan your groceries, cut through metal, eradicate tumors, and even trigger nuclear fusion. But not every laser color is available with the right properties for a specific job.

To fix that, scientists have found a variety of ways to convert one color of laser light into another. In a study just published in the journal Physical Review Applied, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory demonstrate a new color-shifting strategy that is simple, efficient, and highly customizable.

The new method relies on interactions between the laser and in the chemical bonds of materials called “.” These liquids are made only of positively and negatively charged ions, like ordinary table salt, but they flow like viscous fluids at room temperature. Simply shining a laser through a tube filled with a particular ionic liquid can downshift the laser’s energy and change its color while retaining other important properties of the laser beam.

Jan 18, 2023

StrictlyVC in conversation with Sam Altman, part two (OpenAI)

Posted by in categories: nuclear energy, robotics/AI

OpenAI cofounder and CEO Sam Altman sat down for a wide-ranging interview with us late last week, answering questions about some of his most ambitious personal investments, as well as about the future of OpenAI.

This second clip is focused exclusively on artificial intelligence, including how much of what OpenAI is developing Altman thinks should be regulated, whether he’s worried about the commodification of AI, his thoughts about Alphabet’s reluctance to release its own powerful AI, and worst-and best-case scenarios as we move toward a future where AI is ever-more central to our lives.

Continue reading “StrictlyVC in conversation with Sam Altman, part two (OpenAI)” »

Jan 18, 2023

New Nuclear Rocket Design to Send Missions to Mars in Just 45 Days

Posted by in categories: bioengineering, military, nuclear energy, space

We live in an era of renewed space exploration, where multiple agencies are planning to send astronauts to the Moon in the coming years. This will be followed in the next decade with crewed missions to Mars by NASA and China, who may be joined by other nations before long. These and other missions that will take astronauts beyond Low Earth Orbit (LEO) and the Earth-Moon system require new technologies, ranging from life support and radiation shielding to power and propulsion. And when it comes to the latter, Nuclear Thermal and Nuclear Electric Propulsion (NTP/NEP) is a top contender!

NASA and the Soviet space program spent decades researching nuclear propulsion during the Space Race. A few years ago, NASA reignited its nuclear program for the purpose of developing bimodal nuclear propulsion – a two-part system consisting of an NTP and NEP element – that could enable transits to Mars in 100 days. As part of the NASA Innovative Advanced Concepts (NIAC) program for 2023, NASA selected a nuclear concept for Phase I development. This new class of bimodal nuclear propulsion system uses a “wave rotor topping cycle” and could reduce transit times to Mars to just 45 days.

Continue reading “New Nuclear Rocket Design to Send Missions to Mars in Just 45 Days” »

Jan 18, 2023

Copenhagen Atomics submits molten salt SMR design

Posted by in categories: business, nuclear energy, security

UK Atomics, a subsidiary of the company applied to the UK Department for Business, Energy and Industrial Strategy (BEIS) for a GDA by the Office for Nuclear Regulation (ONR) and the Environment Agency (EA). This assessment aims to assess the safety, security, and environmental protection aspects of any nuclear power plant design that is intended to be deployed in the UK.

In May 2021, BEIS opened the GDA process to advanced nuclear technologies, including small modular reactors (SMRs). Successful completion of the GDA culminates in the issue of a Design Acceptance Confirmation from the ONR and a Statement of Design Acceptability from the EA. Rolls-Royce SMR was the first vendor to submit an application for a GDA of an SMR design. Its 470 MWe pressurised water reactor design was accepted for review in March 2022. In December, GE Hitachi Nuclear Energy submitted a GDA entry application for its BWRX-300 SMR, and Holtec International has stated its intention to submit an application for its SMR-160 design.

UK Atomics molten salt reactor design uses unpressurised heavy water as a moderator, while the reactor is intended to burn nuclear waste while breeding new fuel from thorium. The company says, with an output of 100 MWt, it is small enough to allow for mass manufacturing and assembly line production.

Jan 14, 2023

LLNL constructing high-power laser for new experimental facility at SLAC

Posted by in categories: nuclear energy, physics

Lawrence Livermore National Laboratory’s decades of leadership in developing high-energy lasers is being tapped to provide a key component of a major upgrade to SLAC National Accelerator Laboratory’s Linac Coherent Light Source (LCLS).

Over the next several years, LLNL’s Advanced Photon Technologies (APT) program will design and construct one of the world’s most powerful petawatt (quadrillion-watt) laser systems for installation in an upgraded Matter in Extreme Conditions (MEC) experimental facility at LCLS, funded by the Department of Energy’s Office of Science-Fusion Energy Sciences program.

The new laser will pair with the LCLS X-ray free-electron laser (XFEL) to advance the understanding of high-energy density (HED) physics, plasma physics, fusion energy, laser-plasma interactions, astrophysics, planetary science and other physical phenomena.

Jan 13, 2023

Fukushima nuclear disaster: Japan to release radioactive water into sea this year

Posted by in categories: nuclear energy, particle physics

Japan says it will release more than a million tonnes of water into the sea from the destroyed Fukushima nuclear power plant this year.

After treatment the levels of most radioactive particles meet the national standard, the operator said.

The International Atomic Energy Agency (IAEA) says the proposal is safe, but neighbouring countries have voiced concern.

Continue reading “Fukushima nuclear disaster: Japan to release radioactive water into sea this year” »

Jan 11, 2023

Explaining Anomalies in Reactor Antineutrinos

Posted by in categories: nuclear energy, particle physics

Several experiments have been set up outside nuclear reactors to record escaping antineutrinos. The data generally agrees with theory, but at certain energies, the antineutrino flux is 6–10% above or below predictions. These so-called reactor antineutrino anomalies have excited the neutrino community, as they could be signatures of a hypothetical sterile neutrino (see Viewpoint: Getting to the Bottom of an Antineutrino Anomaly). But a new analysis by Alain Letourneau from the French Atomic Energy Commission (CEA-Saclay) and colleagues has shown that the discrepancies may come from experimental biases in associated electron measurements [1].

The source of reactor antineutrinos is beta decay, which occurs in a wide variety of nuclei (more than 800 species in a typical fission reactor). To predict the antineutrino flux, researchers have typically used previously recorded data on electrons, which are also produced in the same beta decays. This traditional method takes the observed electron spectra from nuclei, such as uranium-235 and plutonium-239, and converts them into predicted antineutrino spectra. But Letourneau and colleagues have found reason to doubt the electron measurements.

The team calculated antineutrino spectra—as well as the corresponding electron spectra—using a fundamental theory of beta decay. This method works for some nuclei, but not all, so the researchers plugged the gaps using a phenomenological model. They were able to treat all 800-plus reactor beta decays, finding “bumps” in the antineutrino flux that agree with observations. Similar features are predicted for electron spectra, but they don’t show up in the data. The results suggest that an experimental bias in electron observations causes the reactor antineutrino anomalies. To confirm this hypothesis, the researchers call for new precision measurements of the fission electrons.

Jan 9, 2023

Validating the physics behind designed fusion experiment

Posted by in categories: nuclear energy, physics

Two and a half years ago, MIT entered into a research agreement with startup company Commonwealth Fusion Systems to develop a next-generation fusion research experiment, called SPARC, as a precursor to a practical, emissions-free power plant.

-Sept 2020


MIT researchers have published seven papers outlining details of the physics behind the ambitious SPARC fusion research experiment being developed by MIT and Commonwealth Fusion Systems.

Page 29 of 126First2627282930313233Last