Toggle light / dark theme

“The only plausible way this can arise among different stars is if there is a consistent process operating during the formation of the heavy elements,” Mumpower said. “This is incredibly profound and is the first evidence of fission operating in the cosmos, confirming a theory we proposed several years ago.”

“As we’ve acquired more observations, the cosmos is saying, ‘hey, there’s a signature here, and it can only come from fission.’”

Neutron stars are created when massive stars reach the end of their fuel supplies necessary for intrinsic nuclear fusion processes, which means the energy that has been supporting them against the inward push of their own gravity ceases. As the outer layers of these dying stars are blown away, the stellar cores with masses between one and two times that of the sun collapse into a width of around 12 miles (20 kilometers).

Federal funding brings together experts to chart a viable path to realizing fusion energy as a clean power source.

The University of Rochester’s Laboratory for Laser Energetics (LLE) has received a four-year, $10 million award from the US Department of Energy’s (DOE) Office of Fusion Energy Science (FES) to lead a national research hub dedicated to advancing inertial fusion energy (IFE) science and technology.

The LLE-led inertial fusion energy hub—named IFE-COLoR, which stands for Inertial Fusion Energy-Consortium on LPI (laser-plasma interaction) Research—is one of only three such hubs in the nation selected by the DOE through competitive peer review. The award is part of a recent DOE initiative to stimulate IFE research and development by building on the momentum of scientists’ breakthrough in achieving ignition, or a fusion reaction that creates a net energy gain, last year.

NASA is currently investigating the feasibility of a “cryobot” probe that would drill through the ice crusts of moons such as Europa and Enceladus to directly detect liquid water and discover the possibility of life beyond Earth.


Apart from Mars, scientists are focusing their efforts on two other candidates: Jupiter’s moon Europa and Saturn’s moon Enceladus.

Compelling evidence indicates the potential existence of subsurface oceans beneath thick layers of water ice on these icy moons.

NASA is currently studying the viability of a “cryobot” mission, which would drill through the ice crusts of these moons to directly detect the existence of liquid water and explore the potential for supporting life forms. This is likely to be a nuclear-powered probe that will be deployed with the assistance of a lander.

When it comes to nightmare scenarios for the United States, a nuclear attack from a foreign power has to rank among the worst possible choices. While the likelihood of such a strike is low, that does not stop experts from trying to prepare for any possibility. A story by Business Insider lists the following six cities as the most likely to be at risk in the vent of a future nuclear attack on the United States:

1) Chicago, Illinois.

2) Houston, Texas

NASA’s maiden mission to explore Saturn’s moon, Titan, has progressed to the next phase of development.

If everything goes as planned, the launch of this car-sized nuclear-powered drone will take place in 2028.

The Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, will move to the final stages of design and development of the Dragonfly drone with NASA’s preliminary design approval.

The world’s biggest experimental nuclear fusion reactor in operation was inaugurated in Japan on Friday, a technology in its infancy but billed by some as the answer to humanity’s future energy needs.

Fusion differs from fission, the technique currently used in nuclear power plants, by fusing two atomic nuclei instead of splitting one.

The goal of the JT-60SA reactor is to investigate the feasibility of fusion as a safe, large-scale and carbon-free source of net energy—with more energy generated than is put into producing it.

The notion of black holes is one that invokes terror and dread. They’re inescapable! They devour everything! Nothing ever comes out!

The accuracy of these beliefs falls on the spectrum of debatable to incorrect. And a pair of physicists has now calculated how proverbial blood might be wrung from the black hole stone. According to Zhan-Feng Mai and Run-Qiu Yang of Tianjin University in China, teeny tiny black holes could theoretically be used as a source of power.

Their calculations find that these ultradense objects could work as rechargeable batteries and nuclear reactors, providing energy on the scale of gigaelectronvolts.

Now that’s forward thinking but it’ll be a long while. But that’s science!


Nothing escapes black holes, but over the decades researchers have worked out ways to get some energy out of them. Some happen naturally, and some energy can be stolen in clever ways. Now, researchers have worked out novel approaches to use black holes as power sources, suggesting that they can be used as either batteries or nuclear reactors.

The assumption of this study is a Schwarzschild black hole – one that has no electric charge or angular momentum. So, it’s neutral and it doesn’t spin. By dropping charged particles on it, the black holes can be made to have a static electric field – and suddenly, you have the makings of a battery.

The team imagined the black hole in a cavity from which electrical charge can be put in and then extracted in a slow controllable way, and with impressive efficiency. This theoretical black battery could transform up to 25 percent of its mass into electrical energy.