Helical Fusion, a Tokyo-based startup, is developing a groundbreaking steady-state fusion reactor that could provide limitless clean energy.
Category: nuclear energy – Page 12
Startup Deep Fission has come up with a new way to deal with the economic and safety problems of nuclear power that is, to say the least, novel. The idea is to build a reactor that’s under 30 inches (76 cm) wide and stick it down a mile-deep (1.6-km) drill shaft.
With its promise of limitless energy by breaking down matter itself, nuclear power has long held a utopian promise for humanity. However, economic and safety considerations, along with political opposition, have hindered its development – especially in the very countries that developed the technology.
The safety and economic factors are related because the high cost of building nuclear power stations has very little to do with the nuclear technology itself. Nuclear fuel, even with all the processing costs included, only comes to about US$1,663 per kilogram (2.2 lb). Because nuclear fuel has such an incredible energy density, that’s about 0.46 ¢/kWh – and the fuel costs keep dropping as the technology becomes more efficient.
Scientists at the Princeton Plasma Physics Laboratory are pioneering the use of liquid lithium in spherical tokamaks to enhance fusion performance.
Recent computer simulations suggest the optimal placement of lithium vapor to protect the tokamak’s interior from intense plasma heat. Innovative configurations, such as the lithium “cave” and porous plasma-facing walls, aim to simplify the design and improve heat dissipation, contributing to the future of fusion energy.
Inside the next generation of fusion vessels known as spherical tokamaks, scientists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) envisioned a hot region with flowing liquid metal that is reminiscent of a subterranean cave. Researchers say evaporating liquid metal could protect the inside of the tokamak from the intense heat of the plasma. It’s an idea that dates back several decades and is tied to one of the Lab’s strengths: working with liquid metals.
For the past decade, disordered rock salt has been studied as a potential breakthrough cathode material for use in lithium-ion batteries and a key to creating low-cost, high-energy storage for everything from cell phones to electric vehicles to renewable energy storage.
A new MIT study is making sure the material fulfills that promise.
Led by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering, a team of researchers describe a new class of partially disordered rock salt cathode, integrated with polyanions—dubbed disordered rock salt-polyanionic spinel, or DRXPS—that delivers high energy density at high voltages with significantly improved cycling stability.
Thorium may sound like something out of a Marvel comic book, but the radioactive metal could provide a very real, renewable energy source.
Chinese scientists have been working on a molten salt nuclear power plant using thorium for years. They even created a prototype reactor in 2021, according to the International Atomic Energy Agency.
The plan is to have a “safer, greener” power station up and running by 2025 in the Gobi Desert, where the small, experimental reactor is located, per Interesting Engineering.
Texas is known as the dominant oil state in the US, and its grid is not the most renewable in the world. But because of its size, its traditional reliance on fossil fuels, and its rapid recent uptake of solar and batteries in the face of fierce winter storms and searing summer heat, it has been centre stage for those watching the energy transition.
It’s also interesting for Australia, because although it has about the same population, its grid demand is almost twice as great as Australia’s main grid, yet its average wind and solar penetration (31 per cent) and its peak instantaneous wind and solar penetration (71 per cent) are about the same.
While Australia is dependent still on coal, the main fossil on the Texas grid is gas, with supporting roles for nuclear and an ever decreasing amount of coal. Texas made its initial move into renewables with big wind, but is now more focused on large scale solar and battery storage.
Scientists at PPPL have developed innovative solutions to manage the intense heat generated within fusion reactors.
Try one of the new courses added each month on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.
Nuclear power is one of the most promising ways to create a clean, cheap, and consistent flow of electricity. Unfortunately, it also produces radioactive waste, which can stick around for…a very long time. However, that waste issue might just be changing thanks to a process called transmutation. A Swiss company just got approval for the first accelerator-driven nuclear reactor that can do transmutation. How does this work? Let’s take a look.
🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle…
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl…
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.
#science #sciencenews #nuclear
In the scorched aftermath of World War III, the Earth is a nuclear wasteland, and humanity’s last hope lies in autonomous war machines called \.
Adding or removing neutrons from an atomic nucleus leads to changes in the size of the nucleus. This in turn causes tiny changes in the energy levels of the atom’s electrons, known as isotope shifts. Scientists can use precision measurements of these energy shifts to measure the radius of the nucleus of an isotope.