Toggle light / dark theme

Before the 7.6 billion people alive today, demographers estimate that about 100 billion people lived and died. This is the reality of the human condition. Memento mori, as medieval Christians reflected—Remember that you have to die.

What if it didn’t have to be this way? There are, in fact, organisms whose bodies steadily and reliably replace cells with healthier cells, and whose tissues and organs self-repair and maintain their vigor. They’re called children. And there are cells in adults that divide indefinitely. They’re called cancer. What if there were a way to genetically re-engineer and chemically reprogram our cells to divide indefinitely like they do in children, and to continue this process throughout adulthood without becoming cancerous? Could we become immortal?

“I don’t want to achieve immortality through my work,” Woody Allen once said, “I want to achieve immortality through not dying. I don’t want to live on in the hearts of my countrymen; I want to live on in my apartment.” There are today well-funded groups of scientists who believe we can do just that. If these techno-dreamers succeed, would you want to live for 150 years? 300 years? Or even 500 years? I’m not talking about being brain-dead and bedridden on a morphine drip. I mean living a full, rich physical and mental life for centuries, possibly forever. Would you opt for immortality?

Read more

Israel-based BrainQ is a new neurotech startup hoping to take on brain-computer interface (BCI) companies like Braintree founder Bryan Johnson’s Kernel and Silicon Valley billionaire Elon Musk’s Neuralink.

It’s not clear yet what Musk’s startup intends to do with the computer chips it plans to put in our heads, but Johnson’s startup says it is focused on developing “technologies to understand and treat neurological diseases in new and exciting ways.”

Whatever sector each company goes for, both plan to insert chips in our brains to connect us to computers — the consequences of which could have dramatic effects on human memory, intelligence, communication and many other areas that could rocket humanity forward, should they work out.

Read more

The human heart is an organ whose cells rarely divide, making tissue repair and regeneration a huge problem following a heart attack. Many animals, such as zebrafish and salamanders, are different; they can regenerate damaged hearts easily.

As humans, we also once had the same regenerative capacity during our early development, but after we were born, we lost this ability. This is also true for many other organs, including the brain, spinal cord, and pancreas. The cells in these tissues divide very rarely if at all, and this is a big problem. But, what if we could get that regenerative ability back and repair damage to our hearts the way these amazing animals do?

Researchers have been trying for decades to find out how we can enjoy the same tissue regeneration, but they have met with limited success—until now.

Read more

Researchers have identified a brain signal that indicates whether a person is comprehending what others are saying. The researchers have shown that they can track the signal using relatively inexpensive EEG (electroencephalography) readings taken on a person’s scalp.

During everyday interactions, people routinely speak at rates of 120 to 200 words per minute. For a listener to understand speech at these rates—and not lose track of the conversation—the brain must comprehend the meaning of each of these words very rapidly.

Read more

Researchers at MIT have developed an imaging technique that will help study exactly how electrical signals propagate through the brain, in an advance that could help us better understand Alzheimer’s, epilepsy, and other brain disorders, as well as how thoughts and feelings are formed.

Brain MRIs offer important insight into how our brains work, but they can only produce crude approximations of the areas that are activated by a given stimulus. In order to unravel the minutiae of how neurons communicate and collaborate to form thoughts and feelings, we would need imaging tools with vastly improved resolutions.

Today, far from being able to tackle the 86 billion neurons in the human brain, neuroscientists must settle for studying simple organisms like worms and fish larvae (with neuron counts in the hundreds), relying on slow and cumbersome methods like implanting electrodes into brain tissue to detect electrical signals.

Read more

Scientists have been rejuvenating old mice with infusions of not just the blood of younger mice, but even blood from teenage human beings — and we finally have our first clues on why this strange technique works.

Researchers have discovered an enzyme that helps rescue ageing brains from cognitive decline. So far it’s only been shown in mice, but if the same mechanisms are found in humans, it could lead to a new class of anti-ageing therapies.

Four years ago, a team of researchers led by neurobiologist Saul Villeda from the University of California, San Francisco, discovered that giving older mice infusions of blood from younger mice improved their memory and learning by improving connections in the hippocampus.

Read more

A startup working to better understand the relationship our gut has with our brain has raised another $66 million.

New York-based Kallyope raised its series B round from new investors Two Sigma Ventures and Euclidean Capital. They were joined by Polaris Partners, Illumina Ventures, Lux Capital and others that had invested in Kallyope’s $44 million series A round in 2015.

Kallyope is trying to figure out how exactly the brain interacts with the gut by mapping it out. By collecting sequencing information about cells in the gut, for example, Kallyope can better figure out how they’re connected to neurons in the brain in a series of circuits. Understanding that relationship could lead to pills that could interact with the gut’s signals and in turn pass that message along to the brain.

Read more