Toggle light / dark theme

A focused approach to imaging neural activity in the brain

When neurons fire an electrical impulse, they also experience a surge of calcium ions. By measuring those surges, researchers can indirectly monitor neuron activity, helping them to study the role of individual neurons in many different brain functions.

One drawback to this technique is the crosstalk generated by the axons and dendrites that extend from neighboring neurons, which makes it harder to get a distinctive signal from the neuron being studied. MIT engineers have now developed a way to overcome that issue, by creating indicators, or sensors, that accumulate only in the body of a neuron.

“People are using calcium indicators for monitoring neural activity in many parts of the brain,” says Edward Boyden, the Y. Eva Tan Professor in Neurotechnology and a professor of biological engineering and of brain and cognitive sciences at MIT. “Now they can get better results, obtaining more accurate neural recordings that are less contaminated by crosstalk.”

Can Covid Damage the Brain?

For three months, Chelsea Alionar has struggled with fevers, headaches, dizziness and a brain fog so intense it feels like early dementia. She came down with the worst headache of her life on March 9, then lost her sense of taste and smell. She eventually tested positive for the coronavirus. But her symptoms have been stranger, and lasted longer, than most.

“I tell the same stories repeatedly; I forget words I know,” she told me. Her fingers and toes have been numb, her vision blurry and her fatigue severe. The 37-year-old is a one of the more than 4,000 members of a Facebook support group for Covid survivors who have been ill for more than 80 days.

The more we learn about the coronavirus, the more we realize it’s not just a respiratory infection. The virus can ravage many of the body’s major organ systems, including the brain and central nervous system.

Brilliant neurosurgeon Todd Mainprize found a new pathway to the brain

If Dr. Mainprize felt proud of his role in the breakthrough, he didn’t show it.

He was well aware of the significance of this achievement; it was potentially the key to tackling a wide range of illnesses, from brain cancer to Parkinson’s disease and Alzheimer’s disease – illnesses that are currently impossible or hard to cure. But he also knew he and his team at Sunnybrook Health Sciences Centre still had a long way to go before their work translated into actual treatment for patients, said his close friend and colleague Nir Lipsman.

Podcasts to Listen To: Future Thinkers and the best futurist podcasts to listen to

Nobody can predict what will happen in the future, but there are a few who are trying to help make sense of what is coming. Known as futurists, these “future” experts study the future and make predictions based on current trends. Here are a few futurist podcasts to help you make sense of where we are headed.

Future Thinkers

Created by Mike Gilliland and Euvie Ivanova, this podcast is focused on the evolution of society, technology and consciousness. Episodes include interviews with company founders, psychologists and philosophers. Recent episodes include “James Ehrlich — Regenerative Villages,” “Donald Hoffman — Do We See Reality As It Is?” and “Jamie Wheal Q&A.”

‘Where are my keys?’ and other memory-based choices probed in the brain

Summary: Study identifies a different set of individual neurons in the medial frontal cortex that is responsible for memory-based decision making. The findings have implications for the treatment of Alzheimer’s disease, schizophrenia, and other disorders associated with problems in cognitive flexibility.

Source: CalTech

Most of us know that feeling of trying to retrieve a memory that does not come right away. You might be watching a romantic comedy featuring that famous character actor who always plays the best friend and find yourself unable to recall her name (it’s Judy Greer). While memory retrieval has been the subject of countless animal studies and other neuroimaging work in humans, exactly how the process works–and how we make decisions based on memories–has remained unclear.

Single-gene treatment cures mice of Parkinson’s within three months

While there are ways to alleviate some symptoms, there is currently no way to prevent or cure Parkinson’s disease, so the prospect of a one-off treatment that completely eliminates it is certainly an exciting one. While such a therapy remains a while off, scientists have demonstrated an exciting proof of concept in mice, whereby inhibiting a single gene as a one-time treatment eradicated the disease entirely, and kept it at bay for the remainder of their lives.

The research was carried out at the University of California, San Diego (UCSD), and centers on a protein called PTB, which plays a role in which genes are switch on and off in a cell. The team was experimenting with techniques whereby the gene that encodes for PTB is switched off so researchers can determine the flow-on effects of a reduction in the that protein on other cell types, and found peculiar results when working with connective tissue cells called fibroblasts.

In one experiment, the team created a cell line that was permanently lacking PTB, and after a couple of weeks found that there was only a small amount of fibroblasts remaining in the dish, which was brimming with neurons instead. Building on this, the team was able to use a single treatment to inhibit the activity of PTB in mice, which reprogrammed support cells in the brain called astrocytes into neurons that produce the neurotransmitter dopamine.

One-Time Treatment Generates New Neurons, Eliminates Parkinson’s Disease in Mice

Xiang-Dong Fu, PhD, has never been more excited about something in his entire career. He has long studied the basic biology of RNA, a genetic cousin of DNA, and the proteins that bind it. But a single discovery has launched Fu into a completely new field: neuroscience.

For decades, Fu and his team at University of California San Diego School of Medicine studied a protein called PTB, which is well known for binding RNA and influencing which genes are turned “on” or “off” in a cell. To study the role of a protein like PTB, scientists often manipulate cells to reduce the amount of that protein, and then watch to see what happens.


But then he noticed something odd after a couple of weeks — there were very few fibroblasts left. Almost the whole dish was instead filled with neurons.

In this serendipitous way, the team discovered that inhibiting or deleting just a single gene, the gene that encodes PTB, transforms several types of mouse cells directly into neurons.

More recently, Fu and Hao Qian, PhD, another postdoctoral researcher in his lab, took the finding a big step forward, applying it in what could one day be a new therapeutic approach for Parkinson’s disease and other neurodegenerative diseases. Just a single treatment to inhibit PTB in mice converted native astrocytes, star-shaped support cells of the brain, into neurons that produce the neurotransmitter dopamine. As a result, the mice’s Parkinson’s disease symptoms disappeared.

/* */