Toggle light / dark theme

Scientists at Stanford University say they’ve devised antibodies that block a specific gene related to brain aging — and that it’s giving old mice the cognitive prowess of younger ones.

“The mice became smarter,” senior author Tony Wyss-Coray said in a statement. “Blocking [the gene] CD22 on their microglia restored their cognitive function to the level of younger mice. CD22 is a new target we think can be exploited for treatment of neurodegenerative diseases.”

Read more

Through a new approach dubbed AMBAR, the biotechnology company Grifols has attempted to reduce the amount of harmful, Alzheimer’s disease-causing amyloid beta in the brain by collecting it with a blood protein called albumin and draining it out of the bloodstream. This approach differs from the previous antibody and catabody approaches and offers new hope for sufferers of this neurodegenerative disease.

What is Alzheimer’s disease?

Alzheimer’s disease, named after its discoverer, is a slow and progressive disease that causes the degradation of the brains of its sufferers. This leads to memory loss, a decrease in problem-solving abilities, changes in personality, and other symptoms. It is associated with the accumulation of tau and amyloid beta in the brain.

Read more

According to a report in the official magazine of its Defense Ministry, Russian “supersoldiers” are able to use “parapsychology” techniques to crash enemy computers, access the minds of foreign soldiers, and read documents inside locked safes — abilities they gained, according to the article, from telepathic dolphins they can now communicate with.

The report is almost certainly nonsense. But it does raise questions about the ambitions — and perhaps dysfunctions — of Russia’s military.

Read more

A group of monkeys were found to have “human-like” brain development, including faster reactions and better memories, after a joint Sino-American team of researchers spliced a human gene into their genetic makeup.

Researchers from the Kunming Institute of Zoology at the Chinese Academy of Sciences (CAS), and the University of North Carolina in the United States modified the genes of 11 monkeys (eight first-generation and three second-generation) with the addition of copies of the human gene MCPH1.

Microcephalin (MCPH1) is a key factor in our brain development and, in particular, eventual brain size. Mutations in the gene can lead to the developmental disorder microcephaly, which is characterized by a tiny brain.

Read more

Agree or Disagree?


According to two papers published in Cell on January 11, 2018, the making of memories and the processes of learning resemble, of all things, a viral infection. It works like this: The shells that transport information between neurons are assembled by a gene called Arc. Experiments conducted by two research teams revealed that the Arc protein that forms a shell, functions much like a Gag, a gene that transports a virus’s genetic material between cells during an infection. For example, the retrovirus HIV uses a Gag in exactly this manner.

Scientific American:

Read more

When looking at a picture of a sunny day at the beach, we can almost smell the scent of sun screen. Our brain often completes memories and automatically brings back to mind the different elements of the original experience. A new collaborative study between the Universities of Birmingham and Bonn now reveals the underlying mechanisms of this auto-complete function. It is now published in the journal Nature Communications.

The researchers presented participants with a number of different scene images. Importantly, they paired each scene image with one of two different objects, such as a raspberry or a scorpion. Participants were given 3 seconds to memorise a given scene-object combination. After a short break they were presented with the scene images again, but now had to reconstruct the associated object image from memory.

“At the same time, we examined participants’ activation,” explains Prof. Florian Mormann, who heads the Cognitive and Clinical Neurophysiology group at the University of Bonn Medical Centre. “We focused on two – the hippocampus and the neighbouring .” The hippocampus is known to play a role in associative memory, but how exactly it does so has remained poorly understood.

Read more